
ORACLE MULTITENANT: NEW FEATURES

ORACLE WHITEPAPER
MARCH 2017

Oracle Multitenant: New Features
In Oracle Database 12c Release 2 (12.2)
O R A C L E W H I T E P A P E R | M A R C H 2 0 1 7

ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Oracle Database 12c Release 2. Available now.

Oracle Database 12c Release 2 (12.2), the latest generation of the world’s most popular database, is

now available in the Oracle Cloud and for download from Oracle Technology Network (OTN).

1 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Table of Contents

Disclaimer 1

Oracle Database 12c Release 2. Available now. 1

Isolation and Agility with Economies of Scale 4

Oracle Multitenant in 12.1 5

Consolidation 5

Development and Testing 6

Software as a Service 6

New Features in 12.2 6

Provisioning Enhancements 6

Clone PDB 7

Refreshable PDB 8

PDB Relocate 9

Limitations of PDB Relocate 11

Enhancements to Unplug/Plug 12

Migrating Encryption Keys 12

Self-Service Provisioning with Auto-Login Wallets 12

PDB Archive 12

When to use PDB Relocate and when to use Unplug/Plug 13

2 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Enhancements to Cloning 13

Subset Clones and Metadata-Only Clones 13

Snapshot Clones 14

Storage-Based Snapshots 14

File System Based Snapshots, Enabled by Sparseness 15

ASM on Exadata Storage 15

Local Undo 15

Enabling Scale – Eliminating Barriers to Consolidation 16

Flashback PDB 16

Per-PDB Character Sets 16

4k PDBs per CDB 16

Automatic Workload Repository (AWR) Data at PDB Level 17

Heat Map 17

Isolation 17

Resource Management 18

Memory Management 18

I/O Management on Commodity Storage 19

CPU Management 19

System Access 20

File Access 20

Lockdown Profiles 20

Data Guard Broker Enhancements 21

3 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Software as a Service 22

Multitenant for SaaS in 12.1 24

Multitenant for SaaS in 12.2 25

Application Maintenance 26

Cross-Tenant Aggregation 27

Application Container – Assessment 28

Review of Requirements of a SaaS Solution 28

Conclusion 29

4 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Isolation and Agility with Economies of Scale

It’s not just about scale. Scale on its own can be viewed as a negative. As organizations scale beyond

a single office, communication gets more difficult and you need more layers of management. It’s

harder to be agile – analogies with turning around an oil tanker come to mind. These problems show

how cost can increase exponentially with scale.

With sophisticated automation, technologies associated with first-generation clouds can improve this

cost model to a nearly linear function. Let’s consider a development environment, for example. To

support ten developers, you might need ten virtual machines (VMs). To support twenty developers,

you’ll need 20 VMs. There is an intrinsic cost to each VM, even if it’s not carrying any great workload.

Hence the linear relationship between cost and scale. However, this was still an important step in the

right direction.

Oracle Multitenant is the architecture for the next-generation Database Cloud. Multitenant changes the

situation completely. Multitenant delivers true economies of scale. The expensive model of a VM

containing a database is replaced by a pluggable database (PDB). Because there is negligible intrinsic

cost to a PDB, the cost of each developer’s PDB is reduced to the actual work they do. All developers’

PDBs can be consolidated into a single multitenant container database (CDB) and the costs of running

that CDB can be shared among those developers. In terms of compute resources that’s because

there’s a single set of background processes and a single shared memory area (the SGA). In terms of

administration, that’s a single CDB to be backed up, configured for high availability, patched, etc.

Economies of scale through consolidation are of limited use if that consolidation comes at the expense

of isolation and agility.

In the multitenant architecture of Oracle Database 12c Release 2 (12.2) we build on what was already

a powerful suite of isolation capabilities to deliver a comprehensive model, which can simply be

configured to deliver precisely the appropriate level of isolation for a particular use case. With great

isolation it becomes realistic to consolidate at great scale because the individual workloads being

consolidated do not interfere with each other.

Agility puts in positive terms the avoidance of cumbersome consequences of consolidation conveyed

by the analogy of turning the tanker. Scale can reduce unit costs through vast purchasing power but

those gains are offset if scale comes at the expense of agility. In database terms, agility is about the

speed and efficiency of creating, cloning (and even destroying) databases. It’s about moving them

5 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

between servers, between data centers, between data centers and the Cloud, and moving them

around in the Cloud. This can be for all sorts of reasons; as equipment is retired and replaced with

capacity in the Cloud, for load balancing, for changing service levels or for handling peak loads. These

are essential capabilities for the modern enterprise and the sophisticated functionality of Multitenant

makes them as frictionless as possible.

The key point about economies of scale is that if the savings outweigh the costs of scale, there is true

return on investment. The beauty of Multitenant is that the economies of scale are so great that the

return on investment is far more readily achieved than with other models. Multitenant delivers true

economies of scale, and the two go hand-in-glove.

Multitenant delivers isolation and agility with economies of scale.

Oracle Multitenant in 12.1
With Oracle Multitenant, we are in the paradoxical situation of having a fully functional product in its previous
incarnation and at the same time having a huge amount of new functionality in the new release. Before we delve into
some of these new capabilities, let’s briefly summarize the existing architecture of Multitenant in Oracle Database
12c Release 1 (12.1) and its major advantages.

With Oracle Multitenant, multiple pluggable databases (PDBs) may be consolidated into a single multitenant
container database (CDB). A pluggable database is a self-contained, fully functional Oracle Database. From an
application’s point of view it has not changed in any way, and that’s very important because it means that no
application changes are required to adopt this architecture. So, from an application’s point of view, the PDB is the
database. However, from an operational point of view it’s the CDB that’s the database. The CDB represents a
single, consolidated operating environment. There is a single set of background processes and a single shared
memory area (SGA), shared by all of the PDBs in the CDB. This architecture eliminates replication of overheads,
making most efficient use of available resources. What this means is that you can minimize capital expenses
(CapEx) because you can consolidate more applications per server. From an operational perspective, you can
manage all these consolidated PDBs collectively, greatly reducing operating expenses (OpEx). This applies to
things like backups, configuration of high availability, application of patches and upgrades. These CapEx and OpEx
reductions are part of how Multitenant delivers on the promise of Cloud computing.

This architecture is particularly well suited to three prominent use cases:

Consolidation

A few years ago an important consideration was whether servers (and the software running on them) were capable
of “scaling up” to manage the workload. With the massive power of modern converged infrastructure such as the
Oracle Exadata Database Machine, and indeed Cloud environments comprising many such machines, one begins
to hear the term “scale down”. That is, even with significant applications, it’s often quite possible to consolidate
several into a single server. The trick, to deliver economies of scale, is to be able to “scale down” these servers to
support the various workloads efficiently, without over-provisioning, but retaining the isolation that was the reason to
run them standalone in the first place. Multitenant is ideal for this with the intrinsic isolation of PDBs. Resource
Manager integrates perfectly with this, allowing for the definition of simple-yet-powerful policies governing the

6 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

distribution of resources between PDBs. In 12.1 we can consolidate up to 252 pluggable databases into a single
multitenant container database. 252 PDBs per CDB - that’s a lot!

Development and Testing

Agility, such as is required in a modern development and testing organization, is another key characteristic of cloud
computing. While managing many databases as one, we retain granular control when appropriate and thus we can
increase agility. Provisioning of PDBs is extremely fast and simple, and lends itself well to self-service provisioning
interfaces – a key characteristic of Database as a Service (DBaaS). Provisioning of PDBs is accomplished by a
process known as cloning, of which there are many varieties including full clones, subset clones and even thin
provisioning of snapshot clones (leveraging copy-on-write technology). A pluggable database is a portable database
– it’s very simple and quick to move PDBs between servers using a process known as unplug/plug. Use this for
things like load balancing and migration to and from the Cloud.

Seamlessly integrated with Oracle Real Application Clusters (RAC), with the ability to affinitize a PDB to a specific
node in the cluster, or to run uniformly across multiple nodes, we have the ability to adjust flexibly to changing
workloads. This, along with the simple, self-service provisioning just mentioned, are other key characteristics of a
database cloud.

Software as a Service

Software as a Service (SaaS) is a classic example of cloud computing and correspondingly a classic use case of
Oracle Multitenant. Multitenant delivers an instant SaaS architecture for what we might characterize as “demoralized
Y2k era application vendors”. These applications are typically functionally very rich, but, architected for an
outmoded, standalone, on-premises deployment model, they can’t compete with modern SaaS architectures, even if
they’re functionally superior. Multitenant dramatically changes the rules of the game. By allowing each tenant to be
isolated within a PDB, but with multiple tenants consolidated within a CDB, these applications can be simply
redeployed in a SaaS configuration, with no changes required!

New Features in 12.2
This is the extremely strong foundation on which we developed all the new functionality that we’re delivering with the
new release of Oracle Database 12c – Release 2 (12.2). There are significant enhancements in each of these three
areas. The remainder of this White Paper is devoted to these various enhancements.

For more detailed information about Oracle Multitenant in 12.1, the reader is recommended to consult the Oracle
Multitenant White Paper for 12.1 (2013).

Provisioning Enhancements
Provisioning of databases is a traditional pain point for database administrators (DBAs). The relentless pressure on
the modern organization to innovate translates into continuous demand on development teams to deliver new
systems that feature the capabilities modern customers demand, including mobile capabilities, social interactions
and Cloud ubiquity. All this, while complying with regulatory requirements and the stringent security that is a basic
survival skill in this contemporary environment of pervasive internet hacking. Layered on top of all this are
fundamental technical requirements of scalability, availability, performance, manageability and productivity – the
traditional and unmatched strengths of Oracle Database.

The modern trend of “DevOps”, featuring continuous development, continuous integration and continuous delivery,
exacerbates this pressure as the fundamental layer of the development environment with all of the attributes

7 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

described above is an Oracle Database. As previously discussed, Oracle Multitenant dramatically changed this
situation in 12.1. Provisioning of new databases with Multitenant is a simple matter of cloning PDBs. When
incorporated in a modern DBaaS model, provisioning databases transforms from a process that may have taken
days or weeks (sometimes even months!) and involving staff from multiple teams, into one of a few minutes or even
seconds, executed through simple self-service interfaces.

In 12.2 we deliver significant enhancements to these basic provisioning operations by enabling them to be
performed on-line.

Clone PDB

In 12.1, to clone a PDB, the source PDB must be quiescent for the duration of the clone operation. Colloquially we
refer to this as a “cold clone” operation because it involved an outage (from a transactional perspective) in the
source database. It’s a simple matter to say that a “hot clone” would be preferable, but it’s easier said than done!
However, in 12.2, we support hot clone. This on-line cloning capability is available on all storage supported by
Oracle Database.

A hot clone can be taken while the source PDB is still open read-write. What that means is that a hot clone can be
taken without interrupting operations in the source PDB. No application outage is required for a hot clone.

There follows a brief technical explanation of what happens “under the covers” during a hot clone. These are
provided for the curious reader. For those uninterested in these minutiae, you can skip to the next section,
Refreshable PDB.

Technically what we’re doing in a hot clone is known as a “fuzzy read” of all the blocks in the datafiles of the source
PDB. What this means is that, if the clone operation begins at time t0, by the time the last of the blocks in the source
PDB have been read and copied to the target (time t1), some changes may have been made to some of the blocks
already copied. At this stage, then, the clone may be physically inconsistent with the source.

The next step is to copy all the redo that has accumulated for that source PDB between times t0 and t1, and
transport this to the target. This redo is then applied to the target PDB. At this stage, the target PDB will be an exact
physical copy of the source PDB as of time t1. However, this includes both committed transactions and uncommitted
transactions, and therefore should be considered to be potentially transactionally inconsistent.

What is required now is to rollback the uncommitted transactions. This is achieved by applying the undo for all these
uncommitted transactions. This is the final stage of the clone operation. The resultant clone will be a transactionally
consistent copy of the source PDB as of time t1. That is, all committed transactions in the source PDB as of time t1
will be present in the clone, and all uncommitted transactions will have been rolled back. It will be seen that a key
enabling capability for hot cloning is local undo. This new feature of Oracle Multitenant is described elsewhere in this
paper. Archive logging must also be enabled in order to perform hot clones.

All of this is performed atomically in the familiar clone operation

create pluggable database target from source;

The distinction between a hot clone and a cold clone is only relevant for customers familiar with the capabilities of
12.1. As of 12.2 we will refer simply to clones (and all clones are hot clones).

8 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Refreshable PDB

The Refreshable PDB capability builds upon hot clone. A classic use case here would be development and testing,
in which we’d want a copy of a production PDB. Production databases tend to be large. The larger they are, the
longer they take to copy. A production database in the tens of terabytes scale may take in the order of days to copy.
It is undesirable to do that sort of thing very often, and therefore development copies of this sort of production
database tend to grow rather stale as they age. The staler the database, the less relevant it is for development
purposes, such as debugging. Refreshable PDBs eliminate this problem.

The first step is to take a full clone of the source database. That takes as long as it takes – hours, days, whatever.
Remember that now that we have a hot cloning capability, it doesn’t really matter how long this clone takes because
it doesn’t require any downtime in the source database.

Once the initial clone is complete, the database is available for use. The intended use case of Refreshable PDB is
as a “golden master” database. That is, a database from which individual developers take clones – typically, and
most efficiently snapshot clones (which can be created in seconds or minutes even for very large databases).
Snapshot clones are dealt with elsewhere in other White Papers available from Oracle. As a “golden master”
database, this Refreshable PDB should remain open read-only between refreshes. The PDB must be closed during
the refresh operation itself.

Now, as the clone becomes stale, we can refresh it. We do this by applying all the redo that’s accumulated since it
was last refreshed. Even if the source database is enormous, the incremental redo will typically be much smaller. It’s
therefore going to be a much, much quicker process than the initial hot clone. Therefore, it’s going to be much
simpler to keep production clones refreshed with recent data copied from production.

Refreshable PDBs may be defined to be refreshed either automatically (on a specific schedule) or manually
(refreshed on-demand). It is also possible to perform an on-demand refresh of a PDB defined to be refreshed
automatically. A PDB defined to be automatically refreshed can be transitioned to being manually refreshed, and
vice versa.

To create a PDB for automatic refresh, the syntax is

create pluggable database Golden_Master_PDB from Prod_PDB@DBLink
refresh mode every 360; -- (360 minutes)

The Refreshable PDB should then be opened read-only as follows:

alter pluggable database Golden_Master_PDB read only;

For manual refresh, the syntax is

create pluggable database Golden_Master_PDB from Prod_PDB@DBLink
refresh mode manual;

As before, the Refreshable PDB can be opened read-only when the initial clone operation is complete. Subsequent
refresh operations require the PDB to be closed, and can be achieved with the following statement:

alter pluggable database Golden_Master_PDB refresh;

Note: As described in the Multitenant White Paper for 12.1 (2013), important steps are performed the first time a
PDB is opened read-write after creation. In general, then, this first open read-write operation can be viewed as an
important step to complete the creation of the PDB. It is important to note that this does not apply to Refreshable
PDBs. In fact, it is important not to open a Refreshable PDB read-write, as it may no longer be refreshed thereafter.

9 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

PDB Relocate

A pluggable database is a self-contained, fully-functional Oracle database. A pluggable database is a portable
database; hence the term “pluggable”. This portability is achieved in 12.1 by unplugging the PDB from one CDB and
plugging it into another. This is a very powerful capability. It makes a PDB the ideal vehicle to the Cloud; customers
may achieve this simply by unplugging their PDBs from CDBs in servers in their data centers and plugging them into
an Oracle Database Cloud Service, or perhaps other servers in the customer’s estate. Unplug/plug is also a simple
way of performing load balancing, perhaps by moving a PDB from a heavily-loaded server to one with more
available capacity.

However, moving a PDB between CDBs with the unplug/plug method does involve an outage during the unplug/plug
operation. When moving between servers with shared storage, such as is typically the case in Cloud environments
when the PDB is being moved for load balancing, this outage can be very brief because it’s only a metadata
operation – there’s no need physically to move the datafiles themselves. However, in moving a database between
data centers, or from “ground to cloud” (or the reverse), laws of physics apply – all the data must be physically
moved. For large databases, depending on the capabilities of the underlying network, this process may take
considerable time. It’s possible that the associated outage be problematic.

Service Level Agreements (SLAs) typically feature two conflicting aspects – performance and availability. If a
database is in danger of violating its performance SLA, the solution is typically to move it to a server with more
available processing power. However, to do so traditionally involves an outage in the application, and this is likely to
violate the availability component of the SLA.

PDB Relocate is a new method of moving a PDB between CDBs. This is introduced in 12.2 to allow Oracle
Database Cloud Services to meet both performance and availability components of SLAs with customers. Because
Oracle Database Cloud Services are built on the very same database technology that our customers use, this
capability is generally available to customers too. The goal is to eliminate the outage completely.

There follows some more detailed information about PDB Relocate. Readers for whom this information is less
relevant may skip to the next section.

Technically, PDB Relocate is built “on top” of Refreshable PDB, which as we’ve seen is in turn built on top of hot
clone. When independent listeners are involved, transparent connection forwarding may also be involved.

Operationally, PDB Relocate is achieved in two steps, as follows:

1. Relocate PDB to the new server

2. Open PDB in its new location

Step 1 involves cloning the PDB from its original location to its desired new location. In other words, at the instant
when this step is complete, there will be two transactionally consistent copies of this PDB, one in the source server
and one in the target server. For the duration of the operation, processing continues uninterrupted on the database
in its original location. Users of an application or applications connected to the database will be unaware that a
relocation is underway.

Technically, this is essentially the same as creation of a Refreshable PDB, as described above. All existing
application connections, and new connections made during this step, continue to be to the PDB in its original
location. As we have seen, if Step 1 begins at time t0 and completes at time t1, at time t1 the contents of the two
PDBs will be transactionally consistent. As processing continues it is important to account for the potential for data
changes in the PDB in its original location beyond t1 before connections are switched to the new location.

10 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Step 2 completes the relocation. Again, it’s largely transparent to the application user, although at the end of the
operation, connections to the PDB will have been switched from its original location to the new location. An
important component of this step is to ensure that all transactions committed in the PDB in its source location are
preserved in the target location.

Technically, as we’ve seen, we have to account for any transactions that are committed to the PDB in its source
location after time t1 before processing resumes in its new location. At a high level, all transaction processing must
first cease in the PDB in its source location, an instant we can label time t2. We must reapply all the committed
transactions that have accumulated in the PDB in its source location to the target location before transaction
processing can resume there. With these requirements in mind, there are the following sub-steps during this open
phase.

2a. Open read-only. We know that the PDB is transactionally consistent in its new location as of time t1 and
therefore it is safe to open it read-only. It is thus immediately available there for query purposes, while connections
attempting DML will “spin”. Even though it’s possible that at this stage some committed transactions are not visible in
the target location, they will not be lost (as we shall see). The behavior of any queries against the PDB in its target
location – and it’s only queries that are allowed at this stage – is exactly as it would have been had they been
performed in the PDB in its source location at time t1. This may be seen as a special case of read consistency.

2b. Connection forwarding. All connections must be “drained” from the source location and re-established in the
target location. New connection requests are forwarded to the target location and made to the PDB there. Modern,
well-designed applications typically interact with the underlying database via a connection pool, which can support
large numbers of application users via a small number of (relatively expensive – in terms of computing resources)
database connections. As transactions complete and these connections are released to the connection pool, the
connections are closed. Longer running transactions or poorly written applications may result in connections which
are not naturally released in a timely manner. After a brief interval, these connections are automatically terminated
and re-established at the destination. This process is performed incrementally, so as to avoid a login “storm” at the
destination.

The implication here is that some transactions may be interrupted during the PDB relocation. Note that this is not
inconsistent with the statement that the PDB’s overall availability is nearly continuous. For this reason, it important
for an administrator to be sensitive to the processing windows of these long-running transactions so as to minimize
the impact of PDB relocations.

The details of connection forwarding depend on the configuration of listener(s) at the PDB’s source and target
locations. There are three possibilities:

2.b.i. Shared listener. This situation would typically involve a relocation between CDBs in the same server, such as
would apply if the PDB is being relocated to a CDB with a different set of options installed. In this case the PDB is
re-registered with the listener in its new location.

2.b.ii. Cross-registered listeners. This situation is typical of relocation between servers within a data center, perhaps
for load balancing purposes. In this case the PDB is re-registered in its new location with both listeners.

2.b.iii. Independent listeners with no cross-registration. This will typically be the situation when relocating a PDB
between data centers; perhaps from a data center on a customer’s premises to an Oracle Database Cloud Service.
With no cross-registration, this situation is complicated by the fact that the listener in the target location has no
“knowledge” of the source CDB and vice versa. In this case we offer two levels of availability; “high” and “maximum”.
High availability is aptly named because indeed the PDB is more or less immediately available in its new location for
direct connections. The syntax for a high availability PDB relocation is as follows:

11 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

create pluggable database My_PDB from My_PDB@DBLink relocate availability high;

This statement should be issued from the target CDB. (Availability high is the default.)

Maximum availability goes a step further by automatically forwarding connections made to the PDB in its original
location to its new location. The syntax for a maximum availability PDB relocation is as follows:

create pluggable database My_PDB from My_PDB@DBLink relocate availability max;

This statement should be issued from the target CDB.

It is now important to guard against the possibility of creating another PDB in the original location with the same
name as the PDB that has been relocated. If this were allowed to happen it could result in a very confusing situation
indeed! To avoid this, when performing a maximum availability PDB relocation, we create a “tombstone” in the
source CDB. This is a metadata entry in the source CDB, which may be seen by querying v$containers from the
Root container of the source CDB. The “tombstone” PDB will be visible, with a status of “relocated”.

2c. Application of incremental transactions in target location. Any redo data that has accumulated for that source
PDB between times t1 and t2 is copied to the destination and applied there. At this stage, the target PDB will be an
exact copy of the source PDB as of time t2. However, this includes both committed transactions and uncommitted
transactions. What is required now is to rollback the uncommitted transactions. This is achieved by applying the
undo for all these uncommitted transactions. Because we have ensured that no transactions have occurred in the
origin, we can see that the destination has now caught up.

2d. Open destination read-write. The datafiles are now deleted from the origin.

The PDB relocation is now complete. All processing resumes in the PDB’s new location as if nothing had happened,
although as we’ve seen, a great deal has happened! However, all the operator had to do was issue a couple of SQL
statements.

» There was no need to suffer an application outage.
» There was no need to change any applications.
» There was no need to change any connect strings.

It just worked.

Note that, in the case of PDB relocation between independent listeners with no cross-registration, the presence of
the “tombstone” PDB at the origin implies that it is not immediately possible to relocate the PDB back to its original
container, at least not with its original name (because the tombstone is “occupying” that namespace). It is important
to realize, however, that this is not expected to be a permanent situation. As described above, a maximum
availability PDB relocation involves automatic connection forwarding. This enables clients to continue to connect to
the application database without having to make any connect string changes. However, this does involve an extra
network “hop”. It is anticipated that, at some convenient juncture, application connect strings can be changed to
provide direct connections to the database in its new location. At this point, it is possible simply to drop the
tombstone PDB from the origin. Thereafter, there would be no impediment to relocating the PDB back to its original
container if so desired.

Limitations of PDB Relocate

In general, PDB Relocate is subject to the same plug compatibility constraints as unplug/plug. This subject is well
covered in the Multitenant White Paper for 12.1 (2013). Essentially the plug compatibility of a PDB is checked by
evaluating the PDB’s xml manifest file against the destination CDB. In the case of PDB Relocate, however, the xml
manifest file should not be created by performing an unplug operation (because PDB Relocate is an on-line

12 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

operation). Instead, the manifest file should be generated by connecting to the PDB in its original location and
issuing the command

execute DBMS_PDB.Describe() into PDB_manifest.xml;

Enhancements to Unplug/Plug

Migrating Encryption Keys

Modern Cloud deployments should include a comprehensive security strategy, such as is laid out in Oracle’s
Maximum Security Architecture, which is covered in separate publications from Oracle. Our security philosophy is
“defense in depth” with a comprehensive strategy featuring preventive, detective and administrative components. No
single technical component provides universal protection; however, a fundamental capability is provided by Oracle
Transparent Data Encryption (TDE). In Oracle Database Cloud Services, TDE is not optional – all databases in our
Database Cloud Services are protected by TDE. Many of our customers, who embrace a “hybrid cloud” philosophy,
want to “build their Cloud like we built our Cloud”, and it follows that they have TDE in place too. Accordingly, a
methodology is required to migrate per-PDB encryption keys between CDBs during unplug/plug operations.

In 12.1, this export and import of keys was achieved separately from the PDB unplug/plug operation. This procedure
is documented in the Multitenant White Paper for 12.1 (2013). In 12.2 the migration of encryption keys is simplified
through integration with the unplug/plug operation itself. Technically the encryption keys are transported via the xml
manifest file, where they are encrypted by a shared secret. This is achieved with some additional clauses in the
unplug and plug statements as follows:

Unplug: Executed as SysDBA in Root container of source CDB:

alter pluggable database MyPDB unplug into MyPDB_manifest.xml

encrypt using <shared secret>;

Plug: Executed as SysDBA in Root container of destination CDB:

create pluggable database MyPDB using MyPDB_manifest.xml

decrypt using <shared secret>;

Self-Service Provisioning with Auto-Login Wallets

A key characteristic of Database as a Service (DBaaS) is self-service provisioning. As we’ve seen, the container
database architecture of Oracle Database 12c represents by far the most efficient model for deploying DBaaS.
PDBs are not only the vehicle to the Database Cloud; they are also the enabler of the Database Cloud. This is why
we often refer to Pluggable Database as a Service or PDBaaS. By definition, PDBaaS does not lend itself to
password-based wallets, as these are not designed for unattended operation. For this reason, TDE can also be
operated via “auto-login wallets. These operations, while supported in 12.1, are simplified in 12.2.

PDB Archive

Unplug/plug provides a simple, fast and efficient means of moving a PDB between CDBs. The basic syntax of the
unplug operation is

alter pluggable database MyPDB unplug into PDB_manifest.xml;

where PDB_manifest.xml is referred to as the PDB’s “xml manifest file”. When moving a PDB between CDBs with
no shared storage, it is necessary physically to copy this xml manifest file, along with all of the PDB’s datafiles, to
the destination server.

13 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

This syntax continues to be supported in 12.2. In addition, a new capability is introduced, to combine the manifest
file and all the datafiles into a single file, known as a PDB archive. This PDB archive always has the extension .pdb,
and this can be achieved simply by specifying the archive file (with the .pdb extension) in the familiar unplug
statement, thus:

alter pluggable database MyPDB unplug into MyPDB_archive.pdb;

Correspondingly, when connected as a common SysDBA to the Root container of the destination CDB, plug in the
PDB from its archive file by using the command:

create pluggable database MyPDB using MyPDB_archive.pdb;

When to use PDB Relocate and when to use Unplug/Plug

Unplug/plug remains a powerful operation, fully supported and even enhanced in 12.2. However, as described
above, the PDB Relocate facility introduced with 12.2 provides another means by which to achieve the same result.
The great advantage of PDB Relocate is that it is an on-line operation – that is, the PDB migration does not require
an application outage. This is not the case with unplug/plug. It is anticipated therefore, that the majority of PDB
migrations between CDBs will be performed using PDB Relocate. There remain, however, a few circumstances in
which unplug/plug is the preferred method. These include:

» Moving a PDB between CDBs of different versions or patch levels of Oracle Database
» Moving a PDB between CDBs with different sets of options installed

Enhancements to Cloning

The publication of this White Paper presents an opportunity to list various enhancements to Multitenant cloning
introduced since the initial release of 12.1.

Subset Clones and Metadata-Only Clones

On occasion it is desirable to include a subset of a PDB’s tablespaces when creating a clone. This is fully
documented elsewhere but in essence is achieved by use of the user_tablespaces() clause of the create pluggable
database statement, thus:

create pluggable database NewPDB from OldPDB user_tablespaces(TS1, TS2);

Technically the result of this is comparable to having the datafiles associated with any excluded tablespaces being
offline.

Customers upgrading to Oracle Multitenant from schema consolidation find this capability very useful, as a typical
model is to have dedicated tablespaces for each schema. For example, when upgrading from a database in which
three schemas, Schema1, Schema2 and Schema3 are consolidated with dedicated tablespaces Schema1_TS,
Schema2_TS and Schema3_TS respectively, the upgrade to Multitenant would be achieved by the following
sequence of operations (assuming a starting point of a non-CDB already upgraded to 12.2):

-- (In the non-CDB.) Create manifest file.

execute DBMS_PDB.describe(non$cdb@DBLink) into Non_CDB.xml;

-- (In CDB Root as a common SysDBA.) -- Adopt multi-schema DB as a PDB.

create pluggable database MultiSchema using Non_CDB.xml;

alter pluggable database MultiSchema open;

14 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

-- (While connected to PDB MultiSchema.) Complete conversion of PDB’s metadata.

@NonCDB_to_PDB.sql

-- (In CDB Root as a common SysDBA.) Create PDBs from schemas.

create pluggable database PDB1 from MultiSchema user_tablespaces(Schema1_TS);

create pluggable database PDB2 from MultiSchema user_tablespaces(Schema2_TS);

create pluggable database PDB3 from MultiSchema user_tablespaces(Schema3_TS);

-- Close and drop multi-schema PDB because it has now served its purpose.

alter pluggable database MultiSchema close;

drop pluggable database MultiSchema including datafiles;

In these steps the PDBs for each schema are created. It remains to connect to each PDB in turn and get rid of the
metadata for the unused schemas. For example, connect to PDB1 and issue the following statements:

drop user Schema2 cascade;

drop user Schema3 cascade;

The extreme case of a subset clone is a metadata-only clone. The syntax for creating a metadata-only clone is:

create pluggable database DevPDB from ProdPDB@DBLink no data;

This capability might be used to create a “quick and dirty” clone of a production database for debugging purposes.

Snapshot Clones

A very powerful variety of PDB clone is the snapshot clone. Snapshot clones behave as full data set clones of a
source PDB, while consuming negligible incremental storage. Because so little data need be physically written
during the creation of a snapshot clone, the creation process is extremely fast. The basic syntax involves addition of
the clause snapshot copy to the standard cloning syntax, for example:

create pluggable database Snapshot_PDB from Source_PDB snapshot copy;

The concept of snapshot clones is well described in the Multitenant White Paper for 12.1 (2013) and it’s not
productive to repeat that explanation here.

However, the publication of this White Paper presents an opportunity to update the list of storage technologies on
which snapshot cloning is supported. These storage technologies fall into three categories, each of which has
different characteristics:

Storage-Based Snapshots

Certain storage technologies have native support for storage-efficient copies of files. Oracle Multitenant can take
advantage of the full power of these underlying capabilities without the compromises involved in introducing an
unnecessary additional proprietary layer. We refer to these as “storage-based snapshots”, which are currently
supported on the following platforms:

» Oracle ZFS Storage Appliance
» Oracle ASM Cluster File System (ACFS)
» NetApp™
» EMC™

A key characteristic of storage-based snapshots is that the source PDB may remain read-writeable despite being
the basis for snapshot clones.

15 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

File System Based Snapshots, Enabled by Sparseness

In some cases, databases are deployed on simple file systems rather than specialized storage technology. Most
modern file systems support sparseness. In these cases, by setting CDB initialization parameter CloneDB=TRUE,
snapshot clones are still possible. In these cases, there is a restriction that the source PDB remain read-only and
unchanging for the lifetime of any snapshot clones. In practice, this restriction tends not to be particularly
burdensome, because the typical use cases of snapshot clones tend to involve read-only clone sources anyway:

» The use of refreshable PDBs as “golden master” databases in development and testing environments is
described elsewhere in this document.

» Another popular use of snapshot clones is in provisioning “sandbox” environments for destructive what-if analysis.

ASM on Exadata Storage

Oracle Automatic Storage Management (ASM) on Exadata Storage also supports creation of snapshot clones of
PDBs. These also have the restriction that the source PDB remain read-only and unchanging for the lifetime of any
snapshot clones.

Local Undo

In 12.1, there is global or shared undo for the entire CDB. With shared undo, before performing operations such as
(cold) clone or unplug, it is necessary for the database to check for any uncommitted transactions in the source
PDB. This is to avoid problems with transactional consistency in the PDB after the clone or plug in operation. (If any
uncommitted transactions exist, the following error is issued: ORA-65126 – Pluggable database was not closed
cleanly and there are active transactions that need to be recovered. In such cases it is necessary to open the PDB
read-write, and wait until the SMON process can clean them up.)

In 12.2 we introduce per-PDB or local undo. Local undo avoids these difficulties and thereby significantly improves
the predictability of these important operations. Additionally, it enables many of the major new capabilities of
Multitenant in 12.2, including:

» Hot Clone
» Refreshable PDB
» PDB Relocate
» Flashback PDB

Shared undo is still supported in 12.2, but that is primarily for upgrade transitional purposes only. Arguably there are
minor technical and management overheads to having per-PDB undo but these are vastly outweighed by the
benefits of having local undo (enabling all the new capabilities described in this White Paper and elsewhere). Simple
rules are very often best. In the absence of a really strong case for shared undo in a specific situation, a very good
simple rule to follow is “transition to local undo ASAP in all cases”. By default, Database Configuration Assistant
(DBCA) creates new CDBs with local undo enabled.

Undo mode – whether it’s local or shared – is an all-or-nothing property of the entire CDB. There’s no half-way
situation. Either all the PDBs have local undo or there’s shared undo for the entire CDB.

There are capabilities to switch between local and shared undo and back again. This transition requires the CDB to
be restarted.

When moving a PDB from a CDB with shared undo to one with local undo, the required local undo tablespace(s) are
created automatically. When moving a PDB from a CDB with local undo into one with shared undo, the local undo
tablespace will briefly be used for rollback of uncommitted transactions the first time the PDB is opened read-write.

16 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Thereafter it is not required and can be dropped. The same applies when a CDB is transitioned from shared undo to
local undo or vice versa.

A local undo tablespace is required for each node in an Oracle Real Application Clusters (RAC) cluster in which the
PDB is open. If a PDB is moved from 2-node RAC to 4-node RAC (and opened in all nodes) the additional required
undo tablespaces are automatically created. If the PDB is moved back again, two will be redundant and can be
dropped.

Notes:

1. It is not necessary to set CDB-level database parameter compatible to 12.2 to enable local undo.
2. Undo mode (shared or local) is not considered a plug-compatibility issue.

Enabling Scale – Eliminating Barriers to Consolidation
Much has been said about how Multitenant delivers true economies of scale, and the two go hand-in-glove. The
more you consolidate, the more you save. It follows, then, that it is very important to eliminate any barriers to
consolidation.

It’s fair to say that in 12.1, there were a few capabilities of Oracle Database that were not available with the
Multitenant architecture. Collectively these could be viewed as obstacles to large-scale consolidation. In 12.2 these
have been eliminated. In this section we’ll review some of the important capabilities of Oracle Database that are now
available with Multitenant in 12.2.

Flashback PDB

Flashback PDB is now fully supported.

Per-PDB Character Sets

In 12.2 Multitenant supports consolidation of PDBs with diverse character sets.

The requirement is that the CDB be configured with AL32UTF8. However, it is now possible to consolidate PDBs
with diverse character sets in a single CDB. Character strings are handled properly in each PDB. Furthermore, when
performing cross-container aggregation, perhaps with the containers() SQL construct, character strings from these
diverse PDBs are still handled properly. In other words, it is no longer necessary to convert non-CDBs to AL32UTF8
(using DMU) before consolidating them with Multitenant.

For example, we could have a CDB with character set AL32UTF8, and consolidate into it:

» PDB_Japan with the Kanji character set;
» PDB_EMEA with the ISO8859_p1 character set;
» Along with any number of other PDBs.

4k PDBs per CDB on Oracle Cloud and Oracle Exadata

252 PDBs per CDB was a decent number in 12.1, but in 12.2 on Oracle Cloud and Oracle Exadata we’re increasing
this 16-fold to 4,096 (that is, 4k). It’s more than a flippant slogan to say that with Multitenant, the more you
consolidate, the more you save. We want to support massive scale, for massive savings. This sort of scale is
realistic for typical SaaS deployments and is based on experience with implementations of Multitenant with some of
Oracle’s own SaaS applications running in the Oracle Cloud, such as Oracle Taleo Business Edition (TBE). In other
platforms, the limit remains 252 PDBs per CDB.

17 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Automatic Workload Repository (AWR) Data at PDB Level

This allows for granular diagnosis of performance within a particular PDB. It is particularly important in DBaaS
environments, where one might expect an autonomous Pluggable Database Administrator – a PDBA – to have
responsibility for performance within that PDB.

Heat Map

Heat Map is an important capability introduced with Oracle Database 12c. In 12.2, Heat Map fully supports
Multitenant, which means that all of the storage efficiencies enabled by Oracle Automatic Data Optimization (ADO)
are now available with the container database architecture.

Isolation
Economies of scale through consolidation are of limited use if that consolidation comes at the expense of isolation.
In 12.2 we introduce some very sophisticated capabilities in this area that can ensure great isolation between PDBs
and avoid what is colloquially referred to as “the noisy neighbor problem”. Importantly, this is configurable so that the
level of isolation can be tailored appropriately for the use case. In general when considering the topic of PDB
isolation – one that is especially important in a highly consolidated environment such as a Database Cloud – we
need to consider all of the potential risks of sharing. These fall into several categories:

» Contention for shared computing resources
» System access
» File system access
» Network access
» Common User or Common Object Access
» Administrative Features

In 12.2 we build on what was already a powerful suite of isolation capabilities to deliver a comprehensive model,
which can simply be configured to deliver precisely the appropriate level of isolation for a particular use case.

These capabilities will be explored in more detail shortly, but before then it is important to understand why a “one
size fits all” approach to isolation is not appropriate for the Database Cloud, and why the true requirement is
configurable isolation. When considering this topic, it’s helpful to consider a familiar real-world analogy: residential
security. At first thought, one might think that the more security the better, but in reality security is a trade-off with
convenience. “Maximum Security” is a phrase associated more with a prison than with a home. A home might be
more secure with bars on the windows, surrounded by a high wall topped with barbed wire, armed sentries and triple
locks on a steel door, but it probably wouldn’t be very nice to live there. On the other hand, leaving all the doors and
windows unlocked, while making it easy for the kids to come and go, is likely to result in loss of property. One tries to
find the appropriate balance, and that balance will be different in different circumstances. In a dense city
environment one is likely to take more precautions than in a suburb where the neighbors are better known. In small
towns people sometimes don’t bother to lock at all. Everybody knows what everybody is doing. Security in business
hotels is interesting to consider. There’s typically 24-hour security, with cameras in all common areas, security
guards and sophisticated keys providing access to the guest rooms. Isn’t it interesting to think how alarming is the
prospect that a guest in another room might have access to yours, yet we typically learn to have very little concern
that the hotel staff have access to the room literally at countless times during the day without our knowledge (except

18 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

that perhaps the beds are made and the bathroom is cleaned) and in general even when we’re in the room at night.
Somehow in this situation it becomes perfectly acceptable to delegate security to the hotel management.

Similar considerations apply to the Database Cloud in different use cases.

In Database as a Service (DBaaS) on a Public Cloud, it’s reasonable to assume that “adjacent” tenants may be
competitors. This is a particularly challenging use case because each tenant wants both powerful administrative
capabilities within his own PDB, but also that this PDB is fully isolated from all PDBAs in adjacent PDBs. A good
residential analogy here is condominium ownership. One wants full sovereignty over one’s own space. Everything
on the inside of the front door is one’s responsibility.

DBaaS on a Private Cloud is a very productive configuration for development teams. Each developer needs to be
isolated from the others to the extent that one developer’s test does not interfere with another’s, but it’s typically a
collaborative environment in which there is an expectation that everybody will respect everybody else’s
environments. A good analogy here is sharing a large house with friends. Everybody has a key to the same front
door and the individual bedroom doors are usually left unlocked. There are some common areas and common
equipment but there’s a reasonable expectation of privacy in one’s own bedroom.

Software as a Service (SaaS) may be compared to staying in a hotel. For the price of your room you delegate all
maintenance and security to the hotel management and within reason expect them to respect the sovereignty of the
contents of your room even though they have access more or less at any time. (Perhaps in this case we’d use the
in-room safe to secure anything sensitive from the housekeepers.) Everyone understands that there are other
guests in the hotel and there is a well-founded expectation that no guest from another room with have access to
yours.

It is with these considerations in mind that we designed a configurable isolation model for Multitenant. The following
sections cover some of the major features of this model.

Resource Management

As we’ve seen, tremendous efficiencies can be achieved by sharing resources but we can’t afford for one workload
– a PDB in our case – to monopolize the resources of the system at the expense of all the others. This is why it is of
critical importance to have a powerful, yet simple-to-use, resource management capability.

In 12.1, we can define resource manager policies to control CPU, I/O (but only in Exadata and SuperCluster),
sessions and parallel execution (PX) servers. In 12.2 we’re significantly enhancing this capability. With 12.2 we add
memory management and I/O management on non-engineered systems.

Memory Management

This was a much-requested capability in 12.1. However, it’s important to note that many customers have
consolidated very successfully without this capability. At first glance the lack of this capability might seem to be a
very serious deficiency. On deeper consideration, however, it becomes clearer why in most cases it was not that
important after all. There are several reasons for this. First, the efficiencies of Multitenant mean that there will be
significantly more memory available to an SGA shared by n PDBs than the aggregate of the SGAs if all the
applications they supported were running against n standalone non-CDBs. Several thorough technical studies have
demonstrated and quantified this, but at a high level significant savings are achieved by:

» eliminating program space consumed by replicated background processes;
» sharing over-provisioned SGA in standalone databases;
» sharing parent cursors when common SQL statements are issued across multiple tenants (particularly in SaaS).

19 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Besides having more aggregate memory available, the success may be attributed to the extremely efficient memory
management algorithms in the Oracle SGA. Remember, even within a single non-CDB, SGA is shared between
users. When multiple PDBs are consolidated it may be viewed simply as sharing more memory among more users.
A basic consolidation proposition is that, the more workloads you consolidate, the less likely it becomes that they’ll
all reach peak demand at the same time. In turn this tends to smooth out the net demand for any resource that can
be elastically allocated, and the SGA is a perfect example of this.

All that is said as a matter of fact, not to make a virtue out of a necessity. That is because in 12.2 we do introduce
memory management capabilities. These may be used when appropriate, but as just discussed there are many
consolidation use cases which will work perfectly well without using memory management. An important use case in
which it may be appropriate to use memory management is the relatively low-density consolidation of several
mission-critical (or “platinum SLA”) application databases into a single server.

The following parameters may now be set at a per-PDB level.

Parameter Description

SGA_Target Maximum SGA size for PDB

SGA_Min_Size
(New in 12.2)

Guaranteed SGA size (for buffer cache and shared pool) for PDB.
Tip: Sum of SGA_Min_Size across all PDBs should be <50% of SGA.

DB_Cache_Size Guaranteed Buffer Cache size for PDB

DB_Shared_Pool_Size Guaranteed Shared Pool size for PDB

PGA_Aggregate_Limit Maximum PGA size for PDB

PGA_Aggregate_Target Target PGA size for PDB

I/O Management on Commodity Storage

In 12.1 I/O management was only possible with Exadata Storage (available only with Oracle Exadata and Oracle
SuperCluster engineered systems). With storage optimized for and integrated with the database, the database
“knows” the throughput capabilities of the storage in terms of IOPS and MBPS. In this case, Resource Manager
policies to control I/O between PDBs can be defined simply in terms of shares and limits.

In 12.2 two new per-PDB parameters are introduced to impose rate limits for PDBs on non-Exadata storage. These
are Max_IOPS (maximum input/output operations per second) and Max_MBPS (maximum megabits per second).
Both can be dynamically set and altered. (They may not be set in CDB$Root or on Exadata storage. Error
messages are returned if this is attempted.)

CPU Management

In 12.1 CPU limits per PDB were defined as part of the CDB Resource Plan. In 12.2 we introduce CPU_Count as a
PDB-level parameter. In a Cloud model, where you get what you pay for, this makes it much easier to impose
predictable performance limits on a PDB even as it is moved between servers with different characteristics. A CPU
limit of 50% means 12 cores in an X4-2 server and 22 cores in an X6-2 server. With the new model, one could set
CPU_Count to, say, 8 for a specific PDB and that limit would apply in whatever server the PDB is hosted. (Note that
the percentage limit as defined in a Resource Manager policy is still supported for backward-compatibility reasons. If
both are specified, the lower setting will apply.)

20 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

System Access

When interacting with the operating system (OS) from within Oracle Database (perhaps using the host command in
SQL Plus), operations are performed under the auspices of the Oracle OS user. This is typically a powerful account,
and clearly in a Cloud environment this represents a potential risk to be mitigated. In 12.2 we introduce a new PDB-
level parameter – PDB OS Credential. Where appropriate, this can be used to identify an OS user (presumably one
far less privileged than the Oracle user) which will be used when the OS is accessed.

File Access

Operations that access files or folders in the underlying file system (for example when accessing external tables)
present another potential risk to be mitigated. In 12.2 we introduce two new clauses to the create pluggable
database statement – Path_Prefix and Create_File_Dest. These control the placement of and access to the PDB’s
files by specifying mount points within the file system so that each PDB’s datafiles and directory objects are isolated
in a sub-branch of the file system.

Lockdown Profiles

This is an important new capability with Multitenant in 12.2 that enables very fine control over network access,
common users and common objects, and administrative features. These are the subject of another White Paper by
Oracle, and so will only be briefly summarized here.

The basic philosophy is consistent with our principle of “manage many as one”. The expectation is that a central
administrator, to whom we might refer as a Container Database Administrator or CDBA, would specify a few
Lockdown Profiles. These can then be applied to individual PDBs based on their use case. The beauty of this model
is that it can support consolidation of multiple PDBs with different profiles into a single container database.

Lockdown profiles are complementary to grants and work by restricting the capabilities typically enabled by granting
specific privileges. For example, granting the alter system privilege to a user enables various powerful capabilities
including, among others:

» cursor_sharing
» ddl_lock_timeout
» optimizer_mode
» parallel_degree_limit
» plsql_code_type
» plsql_debug
» plsql_warnings
» resource_manager_plan

Now, one might imagine wanting to empower a developer with, say, plsql_code_type, plsql_debug and
plsql_warnings, but would be reticent to grant any of those other capabilities. Lockdown profiles can be used to
reduce the scope of the alter system privilege to just those capabilities that the user needs, while disabling the
others. For example, one could issue the following statement to tailor the Dev_PDB lockdown profile for these
purposes:

21 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

alter lockdown profile Dev_PDB

disable statement =

(‘ALTER SYSTEM’)

clause = (‘SET’)

option = ALL EXCEPT

(‘plsql_code_type’

,’plsql_debug’

,’plsql_warnings’);

This would have the effect of restricting the capabilities vested in the developer granted alter system privilege to this
list:

» plsql_code_type
» plsql_debug
» plsql_warnings

An important technical detail is that these restrictions are evaluated and imposed at run time. This means that no
objects are invalidated by the application of a lockdown profile.

Technically a lockdown profile may be applied to a PDB only by a common user, commonly granted either SysDBA
or alter system. For example, such a user would connect to the appropriate PDB and issue a command such as

alter system set pdb_lockdown = Dev_PDB;

Data Guard Broker Enhancements

A PDB-level failover capability is enabled in 12.2 with enhancements to Data Guard Broker. In 12.1 we cover both
extremes in terms of data replication.

» At one extreme, Oracle Data Guard (or preferably Active Data Guard) can be configured at the CDB level. This is
a great example of managing many as one (and thus reducing operating costs). Configure this once at the CDB
level and (Active) Data Guard will replicate transactions from primary to standby for all PDBs in a single stream.

» At the other extreme, for replication of data at the individual PDB level, Oracle GoldenGate is the perfect choice.
This can even be used in an active-active configuration, which is a key capability for supporting a truly zero-
downtime upgrade.

However, we acknowledge that some customers would like a capability between these two extremes. In 12.2 Data
Guard Broker has been enhanced to provide what may be viewed as a per-PDB failover capability. To enable this,
we have two pairs of CDBs in two servers, one primary and one standby in each, with replication in opposite
“directions”. In the event of a PDB-level failure, its standby counterpart may be moved to the other CDB in the same
server, where it becomes a new primary. Because this involves shared storage, no physical movement or copying of
datafiles is required and therefore this can be achieved with minimal downtime. In due course a standby can be
created for this new primary PDB.

This is illustrated in Figure 1.

22 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Figure 1. Data Guard Broker Enhancements for Multitenant

Software as a Service
We’ve already seen that a very important use case for Multitenant in 12.1 was Software as a Service (SaaS). After
all, this is the use case for which the product is named! The phrase “isolation and agility with economies of scale”
applies perfectly to SaaS. In 12.2 we dramatically expand our capabilities in this area with some very important
enhancements. These are covered in the following section.

Elsewhere in this White Paper we’ve compared SaaS with hotel management. That’s a very useful analogy for
understanding the isolation requirements in a consolidated environment in which significant functionality is delegated
to a central administrator. Another excellent analogy, which illustrates the economies of scale of SaaS, is gym
membership. Let’s say you set up a new gym, and sell 1000 memberships. How many treadmills do you buy?
Maybe twenty (and even those are unlikely all to be in constant use – except perhaps in the first week of January).

This is a very important point to understand. The efficiency gains of the SaaS model powered by Oracle Multitenant
are not merely incremental. The gains are measured in orders of magnitude. These are changes in kind, not of
degree. (Incidentally, the whole point of DBaaS is to bring the economies of scale of the SaaS business model to the
general database management space, but that’s a topic for another discussion.) What is relevant to this topic is that
SaaS is not just for ISVs. While perfect for them, it’s also very well suited to any business running a franchise model
or perhaps a global operation where common business practices are implemented in subsidiaries around the world.
For the purposes of this discussion we will use the term tenant to indicate either the end customer of a SaaS ISV, a
franchisee, a subsidiary in a global operation, or for that matter any self-contained business unit managed in this
way. Similarly, we’ll use the term ISV to designate the central service provider for those various tenants.

When one considers the benefits of the SaaS use case, it’s important to understand that there are two different
parties to consider. Each has different interests, requirements and in turn the SaaS model delivers different benefits:

Server1

CDB1 CDB2’

Server2

CDB1’ CDB2

Data	Guard	Broker	Enhancements	for	Multitenant

• Two	servers	with	two	
CDBs	in	each
• DG	replication	
between	CDB	pairs	in	
opposite	directions
• PDB	failure	in	primary
• Move	corresponding	
PDB	from	standby	to	
primary	CDB	in	same	
server
– Effectively	perform	
PDB-level	failover

Supporting	individual	PDB-level	failover

PDB1 PDB2 PDB3 PDB4 PDB5

PDB1 PDB2 PDB3 PDB4 PDB5Da
ta
	G
ua
rd
	R
ep

lic
at
io
n

Da
ta
	G
ua
rd
	R
ep

lic
at
io
n

23 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

To the End-Customer To the ISV – Economies of Scale

A rich application experience tailored to their individual
requirements

Massively scalable infrastructure

Isolation from other tenants Highly efficient use of all computing resources –
CPU, memory, storage, I/O

Simple self-service capabilities throughout the customer
lifecycle

Ability to manage many tenants as one with granular
control where appropriate

Services delivered at a competitive price Agility in operations including provisioning, load
balancing, elasticity and maintenance

 Ease of adoption and ease of use

The benefits to the end-customer are very important, but can be reviewed briefly. It is the ISV’s responsibility to
develop a rich application experience. Here of course Oracle Database is the perfect development environment, with
our rich legacy of all of the power, flexibility and productivity of the world’s most advanced relational database, SQL
& PL/SQL and countless development tools, which are beyond the scope of this White Paper. Multitenant helps
significantly here because it is not necessary to redesign a standalone application for multitenancy – it will run
unchanged in a PDB. In this way, Multitenant delivers an instant cloud architecture. Tenant isolation is discussed in
some depth elsewhere in this White Paper, and the intrinsic isolation of a PDB is complemented by the full set of
Oracle Security technologies, all compatible with Multitenant. Self-service lifecycle management can simply be
configured by the ISV according to their requirements because the underlying operations, while very sophisticated,
are neatly encapsulated in simple SQL statements such as alter pluggable database… In modern Database Cloud
environments these will typically be wrapped in RESTful APIs and orchestrated either by Oracle Enterprise Manager
Cloud Control (EMCC) or by other industry-standard automation frameworks such as OpenStack / Chef or Puppet.
Services may be delivered at a competitive price because the economies of scale of Multitenant enable the ISV to
run operations extremely efficiently. The competitive price is a result of the ISV’s being able to pass on these
economies to their end-customer while still running a profitable business.

For the remainder of this section we’ll concentrate on the benefits to the ISV. ISV applications may be classified into
two groups: those formerly architected for on-premises deployment, and those “cloud-born” – that is, architected for
a SaaS deployment model.

Applications formerly architected for standalone on-premises deployment are typically characterized by rich
functionality built up through years of development, but hampered by an outdated deployment model that just can’t
compete with a modern SaaS application, despite often being far superior from a functional perspective. Without
Multitenant, these ISVs are faced with two bad options. Either they could re-architect their application to retrofit
multitenancy, which will typically involve very dramatic re-engineering and testing efforts and lots of unsatisfactory
compromises of performance, isolation and functionality. Or, they can move to a hosted model, running each tenant
standalone in a VM in some first-generation Cloud environment. As we’ve already seen, this model of hosting
tenants in Public Cloud Infrastructure as a Service (IaaS), while typically well automated and instrumented, has a
linear cost model. That is, to support twice as many tenants requires twice as many VMs. This does not represent
true economies of scale. For this class of applications, Multitenant delivers an instant cloud architecture with true
economies of scale.

24 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

More modern, “cloud-born” applications typically employ a model sometimes described as “row-based
consolidation”. Essentially this model hosts multiple tenants in a single database, with each tenant’s data
distinguished by a column (such as Tenant_ID) in each table, designating to whom each row belongs. With data for
all tenants intermingled in the same tables it is thus up to the application to segregate the data. For example, if a
particular tenant were to consult an Orders web page, the “show me my orders” query would be satisfied by the
application code constructing a SQL statement similar to

select * from orders

where Tenant_ID = :Tenant_ID;

The first line (in black) may be viewed as the business logic and the second line (in red) as the application
functionality which ensures isolation between tenants. In general, this works very well, as far as it goes, but there are
some important limitations. For example, there is no scope for a tenant to develop custom screens or reports using
popular application development tools, since there’s no guarantee that the required Tenant_ID predicate will be
added in all cases (if at all). It’s certainly out of the question to allow the use of modern BI tools, such as Oracle
Business Intelligence Enterprise Edition (OBIEE), or whatever may be your tool of choice.

Tenant mobility also becomes a major challenge. In general, all tenants are “born equal”, but it’s notoriously hard to
predict their growth rates. Tenants that grow very rapidly can easily outgrow the capacity of the servers on which
they’re hosted. This results in reduction of quality of service both to the large tenant and to the other tenants with
which it’s consolidated. An obvious solution, of course, is load balancing, which typically means moving either the
large tenant or its current bedfellows to a less heavily loaded server. The challenge with row-based consolidation is
that this is far more easily said than done. Because the data for all tenants resides in the very same tables, this sort
of segregation requires row-by-row operations, which are likely to be extremely time consuming and in turn involve
significant application downtime. We return to the great dilemma of how to maintain performance SLAs without
violating availability SLAs.

Both of these challenges can be summarized by saying that cloud-born applications that implement multitenancy in
the application layer (typically by row-consolidation techniques) have traded isolation and agility for economies of
scale. For this class of application, Multitenant delivers isolation and agility, without compromising economies of
scale.

Multitenant for SaaS in 12.1

Even in 12.1, Multitenant delivered great functionality for the SaaS use case and is illustrated in Figure 2.

The PDB represents an ideal container for each tenant. A formerly standalone application can be installed in the
PDB and run unchanged there. Each tenant’s data is beautifully isolated in its own container. New tenants can be
rapidly “on-boarded” by provisioning for them a fresh PDB with the initialized application pre-installed. To enable
this, the ISV simply runs the basic application installation script in an empty PDB – just once – and designates this
as the “Tenant Seed”. The PDB for a new tenant is provisioned very simply and rapidly as a clone of this Tenant
Seed.

25 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Figure 2. Oracle Multitenant for Software as a Service

There are multiple advantages to supporting SaaS with Multitenant in 12.1:

» Great isolation between tenants;
» Setup of new tenants is very quick;
» Capital expenses are dramatically reduced because many tenants can be supported on a relatively small server

footprint;
» Operating expenses are dramatically reduced because many tenants can be managed collectively for typical DBA

operations (such as backup and patching).

However, although many PDBs can be managed collectively from a Database Administration perspective, this is not
true for Application Administration. Because there is a full copy of the database components of the application in
each PDB, an application upgrade script must be run on each tenant PDB individually. What is needed is an ability
to extend the benefits of managing many as one from the database administrator to the application administrator.

Multitenant for SaaS in 12.2

In 12.2, to address these important SaaS requirements, we introduce a new concept, Application Container. This
topic is covered in greater detail in other White Papers by Oracle, but the major functionality is summarized below.

An Application Container comprises an Application Root, optionally a Tenant Seed and zero or many Tenant PDBs.
The application definition is installed just once, in Application Root. From there the Tenant Seed can be created and
thereafter new tenants provisioned simply by cloning the Tenant Seed. This is illustrated in Figure 3.

Technically, only skeletal metadata is stored in the data dictionaries in Tenant Seed and the Tenant PDBs. This
comprises a set of pointers, known as “stubs”, which are references to the full metadata definitions stored in
Application Root. This is precisely the same mechanism used in Multitenant 12.1 to share full definitions of Oracle-
supplied metadata from the CDB Root to the various PDBs (which themselves have only skeletal sets of system
metadata). In 12.2, with Application Container, this capability is now made available for customers’ use.

Multitenancy implemented	by	the	Database,	not	the	Application
Oracle	Multitenant	for	Software	as	a	Service

Tenant	1 Tenant	2 Tenant	3 Tenant	4 Tenant	5 Tenant	6 Tenant	7

26 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Figure 3. Application Container Overview

Application Maintenance

The beauty of this model is that, since there is only one master copy of the application (installed in Application Root),
it follows that an application patch or upgrade script need only be executed on Application Root. Thereafter
individual tenants can simply synchronize with the new master application definition. Importantly, this does not have
to be done all at once. Individual tenants can choose to synchronize on their own schedule. This eliminates the
cumbersome requirement to negotiate a convenient time to perform a business-wide application upgrade (or the
alternative, which is simply – and typically unpopularly – to enforce one by diktat). In turn, this is likely to enable a
much more agile application development process, because the inconvenience of delivering application upgrades is
so significantly reduced.

An important consideration for application patching and upgrade is to restrict the impact of performing the upgrade
on any individual tenant. In general, an application upgrade may involve a schema change, perhaps with associated
data changes. A simplistic example would be the introduction of a new column, Full_Name to a Person table. In
each tenant this would involve adding this column to the table and then populating it with a concatenation of
First_Name and Last_Name. Of course, this involves a full scan of the affected table and may take significant time.
With Application Container technology, this impact is restricted merely to the tenant being upgraded. This includes
the isolation of each tenant from the execution of the application upgrade to Application Root. All of this is available
when performing an application upgrade with Multitenant alone. Beyond this, Oracle provides various
complementary technologies, such as Edition-Based Redefinition (EBR), GoldenGate, etc., all of which are
compatible with Multitenant in general and Application Containers in particular. These technologies are described in
great detail in other publications from Oracle. They are mentioned here as a reminder that if it is necessary to
reduce the outage associated with an application upgrade even beyond the basic capabilities of Application
Container, these existing capabilities can still be leveraged.

Multitenancy	With	Application	Container	– Overview
• Create	pluggable	database	
wmStore as	Application	
Container
• Install	master	definition	of	
application	in	Application	Root
• Create	Tenant	Seed
• Provision	a	new	PDB	for	each	
new	tenant	as	clone	of	Tenant
Seed

Tenant
Seed

Tenant2 Tenant3Tenant1
App
Root

CDB

-- Schema
create table wm_campaign

(row_id varchar2(15)
…);
create table wm_product
…);

-- Business Logic
create or replace
package wm_Campaign is

procedure Valid_Campaign;
…);

-- Seed Data
-- Campaigns (Central only)
insert into wm_campaign
…);

27 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Cross-Tenant Aggregation

It is important for an ISV to be able to monitor the performance of the SaaS application across all tenants. For
example, the ISV may use certain key metrics such as the number of orders created in the current quarter. In first-
generation cloud architectures, this would have involved a cumbersome and error-prone process of going to each
tenant in turn, repeatedly issuing the SQL statement to count the tenants’ orders, writing down the answers in a
spreadsheet and having the spreadsheet add them all up. A simplistic example of this query might be as follows:

select :Tenant_Name

, count(*)

from orders

where current_quarter = ‘Y’;

With Multitenant in 12.2, it is possible to do this with a single SQL statement, by slightly rewriting this query to use
the new containers() construct as follows:

select con$name

, count(*)

from containers(orders)

where current_quarter = ‘Y’

group by con$name;

This query can now be run just once, in Application Root. Technically, the containers() construct means that the
SQL statement is to be executed recursively (and in parallel) in each Tenant PDB. Results are returned to
Application Root, where they are aggregated. This is illustrated in Figure 4.

Figure 4. Cross-Container Aggregation

Cross-Container	Aggregation	– Overview
• Count	orders	across	all	tenants
– Count	orders	associated	with	
campaign	in	each	franchise

– Cumbersome	to	execute	same	SQL	
statement	for	each	franchise	and	
add	up	results	in	spreadsheet

• Solution:	Containers()	SQL
– Single	SQL	statement	executed	in	
Application	Root

– Executes	recursively	in	each	PDB
– Totals	aggregated	in	Application	
Root

Orders	This Quarter

Tenant #	Orders

Tenant1 1832

Tenant2 531

Tenant3 982

Total 3345

Tenant
Seed

Tenant2 Tenant3Tenant1
App
Root

CDB

select con$name
, count(*)
from containers(orders)
where current_quarter = ‘Y’
group by con$name

28 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Application Container – Assessment

We have seen how the new Application Container capabilities introduced with Multitenant in 12.2 can deliver to the
SaaS use case all the benefits of Multitenant in 12.1, namely:

» Great isolation between tenants;
» Setup of new tenants is very quick;
» Capital expenses are dramatically reduced because many tenants can be supported on a relatively small server

footprint;
» Operating expenses are dramatically reduced because many tenants can be managed collectively for typical DBA

operations (such as backup and patching).

Furthermore, major enhancements are provided, which allow many tenants to be managed as one both in terms of
Application Administration as well as Database Administration.

Review of Requirements of a SaaS Solution

There are multiple pieces to this puzzle, and Multitenant delivers powerful features to support each requirement.

» Tenant isolation
» Each tenant’s data is isolated in a self-contained PDB

» Central Administration
» Application Root contains a central master definition of the application, which serves all tenants.
» Cross-container aggregation, using containers() queries in Application Root, allows global metrics to be

gathered
» Application Containers may span multiple servers

» Agility
» All the capabilities of PDB-based provisioning are available, including on-line cloning, refreshable clones

and PDB relocate
» Application upgrades can be performed on a per-tenant basis, negating the requirement for system-wide

outages
» Security – The intrinsic isolation of PDBs is enhanced with

» Lockdown profiles
» New parameters path_prefix and create_file_dest
» PDB OS Credential
» Additionally, all major Oracle Security features are fully compatible with Multitenant

» Location Transparency is an important capability in a flexible cloud deployment, where workloads may be
relocated for various reasons. These requirements are supported by

» Proxy PDB
» Container Map

» True Economies of Scale are possible with Multitenant
» 4k PDBs per CDB
» Multitenant resource efficiency

29 | ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 12C RELEASE 2

Conclusion
Oracle Multitenant in 12.2 enables isolation and agility with economies of scale whether deployed in the Oracle
Cloud or in your Data Center. Although a highly capable product in 12.1, with great support for a wide range of use
cases including Development and Testing, Consolidation of Disparate Applications and Software as a Service
(SaaS), significant enhancements are delivered in each of these areas.

Modern, innovative and highly productive development and testing organizations demand great agility. For database
components of an application this requires highly efficient capabilities to provision databases. Multitenant in 12.2
supports several powerful on-line provisioning capabilities. Pluggable databases (PDBs) may be cloned without
requiring any downtime in the source. Incremental refresh capabilities are supported to allow “development master”
clones of even huge production databases to be topped up with fresh data simply and efficiently with negligible
impact on the source. On-line relocation of PDBs realizes the dream of simple migration to the Cloud without
requiring an application outage. Likewise, this on-line relocation capability enables a Cloud provider flexibly to adjust
to changing workloads by performing load balancing with minimal impact on running applications.

Unlike first generation cloud architectures, in which individual databases are hosted in dedicated VMs and therefore
the relationship between number of databases and cost is linear, Multitenant delivers true economies of scale to the
Database Cloud. The greater the scale, the greater the economies, and therefore the key requirement for this
potential to be fulfilled is to eliminate any barriers to consolidation. Tenant isolation is a major component of this.
Significant enhancements are delivered in 12.2 including memory management between PDBs, I/O management on
commodity storage, and lockdown profiles, all of which allow the level of isolation appropriate for any particular use
case to be simply configured and applied. Important features of Oracle Database are now fully supported in a PDB,
including Flashback PDB, Continuous Query Notification (CQN) and Heat Map. Automatic Workload Repository
(AWR) reports at a per-PDB basis are now supported, PDBs with diverse character sets can be consolidated into a
single Multitenant Container Database (CDB) and Data Guard broker enhancements enable per-PDB failover. The
maximum number of PDBs in a CDB has been increased to 4,096 on Oracle Cloud and Oracle Exadata, thus
enabling truly cloud-scale consolidation.

For Software as a Service (SaaS), Multitenant in 12.2 delivers a powerful new Application Container capability. This
extends the benefits of managing many tenants as one from the DBA to the Application Administrator. For
applications formerly architected for standalone deployment on premises, Application Container provides an instant
cloud architecture. For cloud-born applications, the SaaS characteristic of great economy of scale has typically been
achieved at the expense of agility. Application Container delivers all the agility of PDBs without compromising on
these great economies of scale. A master application definition can now be installed in a single container, known as
Application Root. Individual tenants in this Application Container are served by this master definition. This enables
application maintenance operations (such as applying an application patch) to be performed in a central location,
and individual tenants can simply synchronize with this new version on their own schedule. Powerful cross-container
aggregation capabilities are possible, allowing for the simple creation of dashboards from which an ISV can assess
the overall performance of the application using key metrics such as number or orders or sum of revenue in the
current quarter. These capabilities are not just for ISVs, but apply equally well to many other business models, such
as franchises or global organizations that replicate business practices across multiple subsidiaries around the globe.

Oracle Multitenant in 12.2: Welcome to the Cloud.

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116

Oracle Multitenant: New Features in Oracle Database 12c Release 2
March 2017
Author: Patrick Wheeler, Senior Director, Product Management, Oracle Database

C O N N E C T W I T H U S

blogs.oracle.com/multitenant

facebook.com/oracle

twitter.com/OraclePDB

oracle.com/goto/multitenant

Das Karlsruher Systemhaus HUNKLER wurde 1988 erster offizieller Part-

ner von Oracle in Deutschland. Ein Team von rund 20 Mitarbeitern unter-

stützt Kunden aus Industrie, öffentlicher Verwaltung, Gesundheits- und

Finanzwesen mit Beratung, Lösungsentwicklung und Managed Services.

Im Fokus von HUNKLER stehen leistungsfähige, wirtschaftliche Infrastrukturen für

Oracle-datenbanken mit den Schwerpunkten Hochverfügbarkeit, Ausfallsicherheit

und Zero Downtime Migration. Die integrierten Komplettlösungen der Produktfa-

milie Oracle Engineered Systems sowie der Datenbank-/Anwendungsbetrieb in der

Oracle Cloud sind weitere Themenfelder, die das Unternehmen umfassend abdeckt.

ÜBER HUNKLER

Hauptsitz Karlsruhe

Bannwaldallee 32, 76185 Karlsruhe

Tel. 0721-490 16-0, Fax 0721-490 16-29

Geschäftsstelle Bodensee

Fritz-Reichle-Ring 6a

78315 Radolfzell

Tel. 07732-939 14-00, Fax 07732-939 14-04

 info@hunkler.de, www.hunkler.de

