
ORACLE DATABASE IN-MEMORY WITH
ORACLE DATABASE 12C RELEASE 2

ORACLE WHITEPAPER
AUGUST 2017

Oracle Database In-Memory with Oracle
Database 12c Release 2

Technical Overview

O R A C L E W H I T E P A P E R | A U G U S T 2 0 1 7

ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Table of Contents

Executive Overview 1

Intended Audience 1

Introduction 2

Oracle Database In-Memory Overview 3

Row Format vs. Column Format 3

The In-Memory Column Store 4

Dynamic Resizing and Automatic Memory Management 4

Populating the In-Memory Column Store 4

In-Memory Compression 6

In-Memory FastStart 8

In-Memory Scans 9

In-Memory Storage Index 10

SIMD Vector Processing 10

In-Memory Expressions 11

In-Memory Virtual Columns 11

Automatically Detected In-Memory Expressions 12

JSON Document Support 13

In-Memory Joins 13

Join Groups 14

In-Memory Aggregation 16

DML and the In-Memory Column Store 18

ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Bulk Data Loads 18

Partition Exchange Loads 19

Transaction Processing 19

The In-Memory Column Store on RAC 21

Distribute For Service 22

Support for rolling patches and upgrades 22

Application affinity 22

In-Memory Fault Tolerance 23

In-Memory FastStart on RAC 24

Controlling the Content of the In-Memory Column Store with ADO 24

User-Defined ADO Policy 25

The In-Memory Column Store in a Multitenant Environment 25

The In-Memory Column Store in an Active Data Guard Environment 26

Restrictions on Active Data Guard 28

Extending In-Memory Columnar Format to Flash on Exadata 28

Controlling the Use of Database In-Memory 29

Core Initialization Parameters 29

Additional Initialization Parameters 30

Optimizer Hints 31

Conclusion 32

Appendix A - Monitoring and Managing Oracle Database In-Memory 33

Monitoring Objects in the In-Memory Column Store 33

Managing IM Column Store Population CPU Consumption 35

ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Session Level Statistics 35

1 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Executive Overview

Oracle Database In-Memory is available with Oracle Database 12c Release 2 on-premises, Cloud at

Customer and on Oracle Cloud. It adds in-memory functionality to Oracle Database 12c Release 2 for

transparently accelerating analytic queries by orders of magnitude, enabling real-time business

decisions. Using Database In-Memory, businesses can instantaneously run analytics and reports that

previously took hours or days. Businesses benefit from better decisions made in real-time, resulting in

lower costs, improved productivity, and increased competitiveness.

Oracle Database In-Memory accelerates both Data Warehouses and mixed workload OLTP

databases, and is easily deployed under any existing application that is compatible with Oracle

Database 12c Release 2 (12.2). No application changes are required. Database In-Memory uses

Oracle’s mature scale-up, scale-out, and storage-tiering technologies to cost effectively run any size

workload. Oracle’s industry leading availability and security features all work transparently with Oracle

Database In-Memory, making it the most robust offering on the market.

"Oracle was ranked as a leader for its Database In-Memory and Oracle TimesTen in The Forrester

WaveTM, Q1 2017. The full report is available on oracle.com.

The ability to easily perform real-time data analysis together with real-time transaction processing on

all existing database workloads makes Oracle Database In-Memory ideally suited for the Cloud and

on-premises because it requires no additional changes to the application. Oracle Database In-Memory

enables organizations to transform into Real-Time Enterprises that quickly make data-driven decisions,

respond instantly to customer demands, and continuously optimize all key processes.

Intended Audience

Readers are assumed to have hands-on experience with Oracle Database technologies from the

perspective of a DBA or performance specialist.

http://www.oracle.com/us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf

2 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Introduction

Today’s information architecture is much more dynamic than it was just a few years ago. Business

users now demand more decision-enabling information, sooner. In order to keep up with increases in

demand, companies are striving to run analytics directly on their operational systems, in addition to

their data warehouses. This leads to a precarious balancing act between transactional workloads,

subject to frequent inserts and updates, and reporting style queries that need to scan large amounts of

data.

With Oracle Database In-Memory, a single database can now efficiently support mixed workloads,

delivering optimal performance for transactions while simultaneously supporting real-time analytics and

reporting. This is possible due to a unique "dual-format" architecture that enables data to be

maintained in both the existing Oracle row format, for OLTP operations, and a new purely in-memory

columnar format, optimized for analytical processing. Oracle Database In-Memory also enables data

marts and data warehouses to provide more ad-hoc analytics, giving end-users the ability to run

multiple business-driven queries in the same time it previously took to run just one query.

Embedding the in-memory column format into the existing Oracle Database software ensures full

compatibility with ALL existing features, and no changes in the application. This makes it an ideal

analytics platform in the Cloud. Applications can be moved to the Cloud and seamlessly take

advantage of the performance of Oracle Database In-Memory's ability to provide real-time analytics.

Companies striving to become real-time enterprises can more easily achieve their goals, regardless of

what applications they are running. This paper describes the main components of Oracle Database In-

Memory and provides simple, reproducible examples to make it easy to get acquainted with them. It

also outlines how Oracle Database In-Memory can be integrated into existing operational systems and

data warehouse environments to improve both performance and manageability.

3 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Oracle Database In-Memory Overview

Row Format vs. Column Format

Oracle Database has traditionally stored data in a row format. In a row format database, each new transaction or

record stored in the database is represented as a new row in a table. That row is made up of multiple columns, with

each column representing a different attribute about that record. A row format is ideal for online transaction systems,

as it allows quick access to all of the columns in a record since all of the data for a given record are kept together in-

memory and on-storage.

A column format database stores each of the attributes about a transaction or record in a separate column structure.

A column format is ideal for analytics, as it allows for faster data retrieval when only a few columns are selected but

the query accesses a large portion of the data set.

But what happens when a DML operation (insert, update or delete) occurs on each format? A row format is

incredibly efficient for processing DML as it manipulates an entire record in one operation (i.e. insert a row, update a

row or delete a row). A column format is not as efficient at processing DML, to insert or delete a single record in a

column format all the columnar structures in the table must be changed. That could require one or more I/O

operations per column. Database systems that support only one format suffer the tradeoff of either sub-optimal

OLTP or sub-optimal analytics performance.

Oracle Database In-Memory (Database In-Memory) provides the best of both worlds by allowing data to be

simultaneously populated in both an in-memory row format (the buffer cache) and a new in-memory columnar

format: a dual-format architecture.

Note that the dual-format architecture does not double memory requirements. The in-memory columnar format

should be sized to accommodate the objects that must be stored in memory. This is different than the buffer cache

which has been optimized for decades to run effectively with a much smaller size than the size of the database. In

practice, it is expected that the dual-format architecture will impose less than a 20% additional memory overhead.

This is a small price to pay for optimal performance at all times for all workloads.

Figure 1. Oracle’s unique dual-format architecture.

With Oracle’s unique approach, there remains a single copy of the table on storage, so there are no additional

storage costs or synchronization issues. The database maintains full transactional consistency between the row and

the columnar formats, just as it maintains consistency between tables and indexes. The Oracle Optimizer is fully

aware of the columnar format: It automatically routes analytic queries to the columnar format and OLTP operations

4 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

to the row format, ensuring outstanding performance and complete data consistency for all workloads without any

application changes.

The In-Memory Column Store

Database In-Memory uses an In-Memory column store (IM column store), which is a new component of the Oracle

Database System Global Area (SGA), called the In-Memory Area. Data in the IM column store does not reside in the

traditional row format used by the Oracle Database; instead it uses a new columnar format. The IM column store

does not replace the buffer cache, but acts as a supplement, so that data can now be stored in memory in both a

row and a columnar format.

The In-Memory area is sub-divided into two pools: a 1MB pool used to store the actual columnar formatted data

populated into memory, and a 64K pool used to store metadata about the objects that are populated into the IM

column store. The amount of available memory in each pool is visible in the V$INMEMORY_AREA view. The relative

size of the two pools is determined by internal heuristics; the majority of the In-Memory area memory is allocated to

the 1MB pool.

Figure 2. Details of the space allocation within the INMEMORY_AREA as seen in V$INMEMORY_AREA

Dynamic Resizing and Automatic Memory Management

The size of the In-Memory area, within the SGA, is controlled by the initialization parameter INMEMORY_SIZE (default

0). The In-Memory area must have a minimum size of 100MB. The current size of the In-Memory area is visible in

the view V$SGA. Starting in 12.2, it is possible to increase the size of the In-Memory area on the fly, by increasing

the INMEMORY_SIZE parameter via an ALTER SYSTEM command, assuming there is spare memory within the SGA.

The INMEMORY_SIZE parameter must be increased by 128MB or more in order for this change to take effect. It is not

possible to shrink the size of the In-Memory area on the fly. A reduction in the size of the INMEMORY_SIZE

parameter will not take effect until the database instance is restarted. It is important to note that the In-Memory area

is not impacted or controlled by Oracle Automatic Memory Management (AMM).

Populating the In-Memory Column Store

Not all of the objects in an Oracle database need to be populated in the IM column store. This is an advantage over

so-called “pure” in-memory databases that require the entire database to be memory-resident. With Oracle

Database In-Memory, the IM column store should be populated with the most performance-critical data in the

database. Less performance-critical data can reside on lower cost flash or disk. Of course, if your database is small

enough, you can populate all of your tables into the IM column store. Database In-Memory adds a new INMEMORY

attribute for tables and materialized views. Only objects with the INMEMORY attribute are populated into the IM

column store. The INMEMORY attribute can be specified on a tablespace, table, partition, subpartition, or materialized

view. If it is enabled at the tablespace level, then all new tables and materialized views in the tablespace will be

enabled for the IM column store by default.

5 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

ALTER TABLESPACE ts_data DEFAULT INMEMORY

Figure 3. Enabling the INMEMORY attribute on the ts_data tablespace by specifying the INMEMORY attribute

By default, all of the columns in an object with the INMEMORY attribute will be populated into the IM column store.

However, it is possible to populate only a subset of columns if desired. For example, the following statement sets the

In-Memory attribute on the table SALES, in the SH sample schema, but it excludes the column PROD_ID.

ALTER TABLE sales INMEMORY NO INMEMORY(prod_id)

Figure 4. Enabling the In-Memory attribute on the sales table but excluding the prod_id column

Similarly, for a partitioned table, all of the table's partitions inherit the in-memory attribute but it is possible to

populate just a subset of the partitions or subpartitions.

To indicate an object is no longer a candidate, and to instantly remove it from the IM column store, simply specify

the NO INMEMORY clause.

ALTER TABLE sales MODIFY PARTITION SALES_Q1_1998 NO INMEMORY

Figure 5. Disabling the In-Memory attribute on one partition of the sales table by specifying the NO INMEMORY clause

The IM column store is populated by a set of background processes referred to as worker processes (e.g.

ora_w001_orcl). The database is fully active and accessible while this occurs. With a pure in-memory database, the

database cannot be accessed until all of the data is populated into memory, which blocks availability until the

population is complete.

Each worker process is given a subset of database blocks from the object to populate into the IM column store.

Population is a streaming mechanism, simultaneously columnizing and compressing the data.

Just as a tablespace on disk is made up of multiple extents, the IM column store is made up of multiple In-Memory

Compression Units (IMCUs). Each worker process allocates its own IMCU and populates its subset of database

blocks in it. Data is not sorted or ordered in any specific way during population. It is read in the same order it

appears in the row format.

Objects are populated into the IM column store either in a prioritized list immediately after the database is opened or

after they are scanned (queried) for the first time. The order in which objects are populated is controlled by the

keyword PRIORITY, which has five levels (see figure 7). The default PRIORITY is NONE, which means an object is

populated only after it is scanned for the first time. All objects at a given priority level must be fully populated before

the population of any objects at a lower priority level can commence. However, the population order can be

superseded if an object without a PRIORITY is scanned, triggering its population into IM column store.

ALTER TABLE customers INMEMORY PRIORITY CRITICAL

Figure 6. Enabling the In-Memory attribute on the customers table with a priority level of critical

6 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

PRIORITY DESCRIPTION

CRITICAL Object is populated immediately after the database is opened

HIGH Object is populated after all CRITICAL objects have been populated, if space remains available in

the IM column store

MEDIUM Object is populated after all CRITICAL and HIGH objects have been populated, and space

remains available in the IM column store

LOW Object is populated after all CRITICAL, HIGH, and MEDIUM objects have been populated, if

space remains available in the IM column store

NONE Objects only populated after they are scanned for the first time (Default), if space is available in the

IM column store

Figure 7. Different priority levels controlled by the PRIORITY sub clause of the INMEMORY clause

Restrictions

Almost all objects in the database are eligible to be populated into the IM column but there are a small number of

exceptions. The following database objects cannot be populated in the IM column store:

 Any object owned by the SYS user and stored in the SYSTEM or SYSAUX tablespace

 Index Organized Tables (IOTs)

 Clustered Tables

The following data types are also not supported in the IM column store:

 LONGS (deprecated since Oracle Database 8i)

 Out of line LOBS

All of the other columns in an object that contain these datatypes are eligible to be populated into the IM column

store. Any query that accesses only the columns residing in the IM column store will benefit from accessing the table

data via the column store. Any query that requires data from columns with a non-supported column type will be

executed via the row store.

Objects that are smaller than 64KB are not populated into memory, as they will waste a considerable amount of

space inside the IM column store as memory is allocated in 1MB chunks.

In-Memory Compression

In general, compression is considered only as a space-saving mechanism. However, data populated into the IM

column store is compressed using a new set of compression algorithms that not only help save space but also

improve query performance. The new Oracle In-Memory compression format allows queries to execute directly

against the compressed columns. This means all scanning and filtering operations will execute on a much smaller

amount of data. Data is only decompressed when it is required for the result set.

In-memory compression is specified using the keyword MEMCOMPRESS, a sub-clause of the INMEMORY attribute.

There are six levels, each of which provides a different level of compression and performance.

7 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

COMPRESSION LEVEL DESCRIPTION

NO MEMCOMPRESS
Data is populated without any compression

MEMCOMPRESS FOR DML
Minimal compression optimized for DML performance

MEMCOMPRESS FOR QUERY LOW
Optimized for query performance (default)

MEMCOMPRESS FOR QUERY HIGH
Optimized for query performance as well as space saving

MEMCOMPRESS FOR CAPACITY LOW
Balanced with a greater bias towards space saving

MEMCOMPRESS FOR CAPACITY HIGH
Optimized for space saving

Figure 8. Different compression levels controlled by the MEMCOMPRESS sub-clause of the INMEMORY clause

By default, data is compressed using the FOR QUERY LOW option, which provides the best performance for queries.

This option utilizes common compression techniques such as Dictionary Encoding, Run Length Encoding and Bit-

Packing. The FOR CAPACITY options apply an additional compression technique on top of FOR QUERY compression,

which can have a significant impact on performance as each entry must be decompressed before the WHERE clause

predicates can be applied. The FOR CAPACITY LOW option applies a proprietary compression technique called OZIP

that offers extremely fast decompression that is tuned specifically for Oracle Database. The FOR CAPACITY HIGH

option applies a heavier-weight compression algorithm with a larger penalty on decompression in order to provide

higher compression.

Compression ratios can vary from 2X – 20X, depending on the compression option chosen, the datatype, and the

contents of the table. The compression technique used can vary across columns, or partitions within a single table.

For example, you might optimize some columns in a table for scan speed, and others for space saving.

CREATE TABLE employees

 (c1 NUMBER,

 c2 NUMBER,

 c3 VARCHAR2(10),

 c4 CLOB)

INMEMORY MEMCOMPRESS FOR QUERY

NO INMEMORY(c4)

INMEMORY MEMCOMPRESS FOR CAPACITY HIGH(c2)

Figure 9. A create table command that indicates different compression techniques for different columns

Oracle Compression Advisor

Oracle Compression Advisor (DBMS_COMPRESSION) has been enhanced to support in-memory compression.

The advisor provides an estimate of the compression ratio that can be realized through the use of

MEMCOMPRESS. This estimate is based on analysis of a sample of the table data and provides a good estimate of

the actual results obtained once the table is populated into the IM column store. As the advisor actually applies the

new MEMCOMPRESS algorithms to the data it can only be run for Database In-Memory in an Oracle Database 12c

environment.

DECLARE

 l_blkcnt_cmp PLS_INTEGER;

 l_blkcnt_uncmp PLS_INTEGER;

 l_row_cmp PLS_INTEGER;

8 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

 l_row_uncmp PLS_INTEGER;

 cmp_ratio PLS_INTEGER;

 l_comptype_str VARCHAR2(100);

 comp_ratio_allrows NUMBER := -1;

BEGIN

 dbms_compression.get_compression_ratio (

 -- Input parameters

 scratchtbsname => 'TS_DATA',

 ownname => 'SSB',

 objname => 'LINEORDER',

 subobjname => NULL,

 comptype => dbms_compression.comp_inmemory_query_low,

 -- Output parameter

 blkcnt_cmp => l_blkcnt_cmp,

 blkcnt_uncmp => l_blkcnt_uncmp,

 row_cmp => l_row_cmp,

 row_uncmp => l_row_uncmp,

 cmp_ratio => cmp_ratio,

 comptype_str => l_comptype_str,

 subset_numrows => dbms_compression.comp_ratio_allrows);

 dbms_output.put_line('The IM compression ratio is '|| cmp_ratio);

 dbms_output.put_line('Size in-mem 1 byte for every '|| cmp_ratio || 'bytes on disk');

);

END;

Figure 10. Using the Oracle Compression Advisor (DBMS_COMPRESSION) to determine the compressed size and compression ratio

of the LINEORDER table in memory

Note: When you set the comptype to any of the MEMCOMPRESS types the blkcnt_cmp output value is always set

to 0 as there are no data blocks in the IM column store.

Also, changing the compression clause of columns with an ALTER TABLE statement results in a repopulation of any

existing data in the IM column store.

In-Memory FastStart

In-Memory population is a CPU bound operation, involving reformatting data into a columnar format and

compressing that data before placing it in memory. New in 12.2, it is possible to checkpoint IMCUs to disk to relieve

the CPU overhead of population, at the cost of additional disk space and IO bandwidth.

When In-Memory FastStart (IM FastStart) is enabled, the system checkpoints the IMCUs from the IM column store

to the FastStart area on disk. On subsequent database restarts, data is populated via the FastStart area rather than

from the base tables.

The FastStart area is a designated tablespace where In-Memory objects are stored and managed. The IM FastStart

service is database specific, such that only one FastStart area is permitted for each database or Pluggable

Database (PDB) in a Container Database (CDB) environment and is automatically enabled for all In-Memory

objects except for objects compressed with “NO MEMCOMPRESS”, “MEMCOMPRESS FOR DML” or with Join Groups

defined on them.

The following PL/SQL procedure enables IM FastStart, and designates the tablespace FS_TBS as the FastStart

area.

9 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

BEGIN

 dbms_inmemory_admin.faststart_enable('FS_TBS');

END;

Figure 11. New PL/SQL procedure FASTSTART_ENABLE to turn on In-Memory FastStart

When IM FastStart is enabled, the IMCO (In-Memory Coordinator) background process designates one of the

background worker processes as the FastStart coordinator process. The FastStart coordinator maintains an ordered

list of IMCUs to be written to the FastStart area. IMCUs that have not been written to the FastStart area and ones

that are not changing frequently are given the highest positions on the list. If one or more of the IMCUs of an object

are changing rapidly then the writing out of those IMCUs will be delayed until the frequency of the changes slows

down.

In order to reduce the overhead of IM FastStart, the FastStart coordinator schedules the writing of IMCUs to the

FastStart area based on the ordered list as described above. Additionally, the IMCUs are written lazily to the

FastStart area with the new version of an IMCU replacing its previous version in the FastStart area. This helps

ensure that the overhead to maintain the FastStart area is balanced with the benefit of having the most up to date

copy of each IMCU for the object in the FastStart area.

Figure 12. Populating the column store from the FastStart area

In order to populate the IM column store from the FastStart area, all transactional consistency checks need to be

performed. This ensures that the data populated into the IM Column Store is consistent as of the population time.

Transactional consistency checks involve comparing the System Change Number (SCN) at which the IM FastStart

checkpoint was taken for the IMCU with the most recent modification SCN. Depending on the result of this check

and internal thresholds, the IMCU will be populated into the IM Column Store entirely from the FastStart area,

populated from the FastStart area with some rows marked invalid (due to data modification after the IMCU was

written to the FastStart area) or completely discarded and populated from disk.

In-Memory Scans

Analytic queries typically reference only a small subset of the columns in a table. Oracle Database In-Memory

accesses only the columns needed by a query, and applies any WHERE clause filter predicates to these columns

directly without having to decompress them first. This greatly reduces the amount of data that needs to be accessed

and processed.

10 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

In-Memory Storage Index

A further reduction in the amount of data accessed is possible due to the In-Memory Storage Indexes that are

automatically created and maintained on each of the columns in the IM column store. Storage Indexes allow data

pruning to occur based on the filter predicates supplied in a SQL statement. An In-Memory Storage Index keeps

track of minimum and maximum values for each column in an IMCU. When a query specifies a WHERE clause

predicate, the In-Memory Storage Index on the referenced column is examined to determine if any entries with the

specified column value exist in each IMCU by comparing the specified value(s) to the minimum and maximum

values maintained in the Storage Index. If the column value is outside the minimum and maximum range for an

IMCU, the scan of that IMCU is avoided.

For equality, in-list, and some range predicates an additional level of data pruning is possible via the metadata

dictionary created for each IMCU when dictionary-based compression is used. The metadata dictionary contains a

list of the distinct values for each column within that IMCU. Dictionary based pruning allows Oracle Database to

determine if the value being searched for actually exists within an IMCU, ensuring only the necessary IMCUs are

scanned.

SIMD Vector Processing

For the data that does need to be scanned in the IM column store, Database In-Memory uses SIMD vector

processing (Single Instruction processing Multiple Data values). Instead of evaluating each entry in the column one

at a time, SIMD vector processing allows a set of column values to be evaluated together in a single CPU

instruction.

The columnar format used in the IM column store has been specifically designed to maximize the number of column

entries that can be loaded into the vector registers on the CPU and evaluated in a single CPU instruction. SIMD

vector processing enables Database In-Memory to scan billion of rows per second.

For example, let’s use the SALES table in the SH sample schema (see Figure 13), and let’s assume we are asked to

find the total number of sales orders that used the PROMO_ID value of 9999. The SALES table has been fully

populated into the IM column store. The query begins by scanning just the PROMO_ID column of the SALES table.

The first 8 values from the PROMO_ID column are loaded into the SIMD register on the CPU and compared with

9999 in a single CPU instruction (the number of values loaded will vary based on datatype & memory compression

used). The number of entries that match 9999 is recorded, then the entries are discarded and another 8 entries are

loaded into the register for evaluation. And so on until all of the entries in the PROMO_ID column have been

evaluated.

Figure 13. Using SIMD vector processing enables the scanning of billions of rows per second

To determine if a SQL statement is scanning data in the IM column store examine the execution plan.

11 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Figure 14. New INMEMORY keyword in the execution plan indicates operations that are candidates for In-Memory

You will notice that the execution plan shows a new set of keywords "IN MEMORY". These keywords indicate that

the LINEORDER table has been marked for IN MEMORY and Oracle Database may use the column store in this

query.

In-Memory Expressions

Analytic queries often contain complex expressions in the select list or where clause predicates that need to be

evaluated for every row processed by the query. The evaluation of these complex expressions can be very resource

intensive and time consuming.

New in 12.2, In-Memory Expressions provide the ability to materialize commonly used expressions in the IM column

store. Materializing these expressions not only improves the query performance by preventing the re-computation of

the expression for every row but it also enables us to take advantage of all of the In-Memory query performance

optimizations when we access them.

An In-Memory Expression can be a combination of one or more values, operators, and SQL or PL/SQL functions

(deterministic only) that resolve to a value. They must be derived only from the table they are associated with, which

means that they cannot access column values in a different table. In-Memory Expressions can be created either

manually via virtual columns or automatically via the Expression Statistics Store (ESS).

In-Memory Virtual Columns

New in 12.2, user-defined virtual columns can now be populated in the IM column store. Virtual columns will be

materialized as they are populated and since the expression is evaluated at population time it can be retrieved

repeatedly without re-evaluation. The initialization parameter INMEMORY_VIRTUAL_COLUMNS must be set to ENABLE

or MANUAL to create user-defined In-Memory virtual columns. When set to ENABLE all user-defined virtual columns

on a table with the INMEMORY attribute, will be populated into the IM column store. However, it is possible to have

just a subset of virtual columns be populated.

Let’s look at an analytic query, which contains a number of expressions:

SELECT

 l_returnflag, l_linestatus,

 SUM(l_extendedprice * (1 - l_discount)) AS sum_disc_price,

 SUM(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,

 COUNT(*) as count_order

FROM lineitem

WHERE l_shipdate <= to_date ('1998-12-01','YYYY-MM-DD') - 90

12 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

GROUP BY l_returnflag, l_linestatus;

Figure 15. Analytic query containing a number of commonly used expressions

Imagine the expressions SUM(l_extendedprice * (1 - l_discount))and SUM(l_extendedprice * (1 -

l_discount) * (1 + l_tax)) are commonly used expressions for a given application, which makes them good

candidates for In-Memory Expressions. Below are the steps necessary to define these expressions as virtual

columns and have them populated in the IM column store:

-- Create virtual columns for the two expressions

ALTER TABLE lineorder ADD sum_disc_price AS (lo_extendedprice * (1 - lo_discount))

ALTER TABLE lineorder ADD sum_charge AS (lo_extendedprice * (1 - lo_discount) * (1 +

lo_tax))

-- Enable the INMMEORY attribute on the Lineorder table

ALTER TABLE lineorder INMEMORY PRIORITY HIGH

Figure 16. Steps required to manually populate two commonly used expressions into the IM column store

Automatically Detected In-Memory Expressions

In-Memory Expressions can also be automatically detected using the ESS and the new procedure in the

DBMS_INMEMORY_ADMIN package. When you execute the IME_CAPTURE_EXPRESSIONS procedure, the 20 most

frequently executed expressions, as determined by the Optimizer, are captured from the ESS and populated

automatically into the IM column store. Automatically added expressions are created as hidden virtual columns and

a full list of the expressions captured can be found in the view USER_IM_EXPRESSIONS. Below is an example

demonstrating the steps for capturing the 20 most frequently executed expressions from the ESS for the past 24

hours (i.e. the CURRENT parameter value) and then populating these expressions into the IM column store. Note, if

the second command is not used then the database will not populate the captured In-Memory Expressions until the

associated table is repopulated.

-- Capture the expressions for ESS

BEGIN

 dbms_inmemory_admin.ime_capture_expressions('CURRENT');

END;

-- Check what expressions were captured

SELECT * FROM user_im_expressions

-- Populate the captured expression in the IM column store

BEGIN

 dbms_inmemory_admin.ime_populate_expressions;

END;

Figure 17. Steps required to populate the 20 most frequently executed expressions from the ESS into the IM column store

This feature also requires the setting of the initialization parameter INMEMORY_EXPRESSIONS_USAGE, to determine

what type of In-Memory Expressions are eligible to be populated. See the Managing and Monitoring section below

for more details on this parameter and other parameters used to manage In-Memory Expressions.

Currently in 12.2, In-Memory Expressions and In-Memory Virtual Columns are not candidates to be check-pointed to

disk using In-Memory FastStart. Only the user defined columns of a table are written to the FastStart area.

13 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

JSON Document Support

Although JSON documents have always been supported in the IM column store, new in 12.2 JSON documents can

be stored in a special binary JSON format, which enables JSON functions, such as JSON_TABLE, JSON_VALUE or

JSON_EXISTS to perform much more efficiently.

The example below shows how to enable JSON documents in the IM column store using a table called RETAIL,

which contains a column, JDOC, which contains JSON documents (not shown) and then add a new column

TAXAMOUNT based on the JSON_VALUE function to enable fast retrieval of the taxable amount in the JSON

document.

-- Create the RETAIL table with a JSON column

CREATE TABLE retail

(jdoc VARCHAR2(2000) INMEMORY CONSTRAINT json_con_1 CHECK (jdoc IS json))

-- Load JSON documents into the RETAIL table (not shown)

-- Create binary JSON column

ALTER TABLE retail ADD

(taxamount as (json_value(jdoc,'$.TaxSummary.Summaries.TaxableAmount')))

Figure 18. Steps required for adding a JSON binary column to a table and then populating the table into the IM column store

The following query that uses the JSON_VALUE function to aggregate taxable amounts from the RETAIL table will

now be automatically rewritten to take advantage of the JSON binary column in the IM column store, dramatically

improving the performance of the query:

SELECT MAX(JSON_VALUE(jdoc, '$.TaxSummary.Summaries.TaxableAmount')) AS max_tax_amount,

 SUM(JSON_VALUE(jdoc, '$.TaxSummary.Summaries.TaxableAmount')) AS sum_tax_amount,

 AVG(JSON_VALUE(jdoc, '$.TaxSummary.Summaries.TaxableAmount')) AS avg_tax_amount

FROM retail

Figure 19. Example of a query that uses the JSON_VALUE function

In-Memory Joins

SQL statements that join multiple tables can also be processed very efficiently in the IM column store as they can

take advantage of Bloom Filters. A Bloom filter transforms a join into a filter that can be applied as part of the scan

of the larger table. Bloom filters were originally introduced in Oracle Database 10g to enhance hash join

performance and are not specific to Database In-Memory. However, they are very efficiently applied to column

format data via SIMD vector processing.

When two tables are joined via a hash join, the first table (typically the smaller table) is scanned and the rows that

satisfy the WHERE clause predicates (for that table) are used to create an in-memory hash table stored in the

Program Global Area (PGA). During the hash table creation, a bit vector or Bloom filter is also created based on the

join column. The bit vector is then sent as an additional predicate to the scan of the second table. After the WHERE

clause predicates have been applied to the second table scan, the resulting rows will have their join column hashed

and it will be compared to values in the bit vector. If a match is found in the bit vector that row will be sent to the

hash join. If no match is found then the row will be discarded

It’s easy to identify Bloom filters in the execution plan. They will appear in two places, at creation time and again

when it is applied. Let’s take a simple two-table join between the DATE_DIM and LINEORDERS table as an example:

14 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

SELECT SUM(lo_extendedprice * lo_discount) revenue

FROM lineorder l,

 date_dim d

WHERE l.lo_orderdate = d.d_datekey

AND l.lo_discount BETWEEN 2 AND 3

AND d.d_date='December 24, 2013'

Figure 20. Simple two-table join that will benefit from Bloom filters in the In-Memory column store

Below is the plan for this query with the Bloom filter highlighted. The first step executed in this plan is actually line 4;

an in-memory full table scan of the DATE_DIM table. The Bloom filter (:BF0000) is created immediately after the scan

of the DATE_DIM table completes (line 3). The Bloom filter is then applied as part of the in-memory full table scan of

the LINEORDER table (line 5 & 6).

Figure 21. Creation and use of a Bloom filter in a two-table join between the DATE_DIM and LINEORDER tables

It is possible to see what join condition was used to build the Bloom filter by looking at the predicate information

under the plan. Look for 'SYS_OP_BLOOM_FILTER' in the filter predicates. You may be wondering why a HASH

JOIN appears in the plan (line 2) if the join was converted to a Bloom filter. The HASH JOIN is there because a

Bloom filter has the potential to return a false positive. The HASH JOIN confirms that all of the rows returned from

the scan of the LINEORDER table are true matches for the join condition. Typically this consumes very little work.

What happens for a more complex query where there are multiple tables being joined? This is where Oracle’s 30+

years of database innovation kicks in. By seamlessly building the IM column store into Oracle Database we can take

advantage of all of the optimizations that have been added to the database since the first release. Using a series of

optimizer transformations, multiple table joins can be rewritten to allow multiple Bloom filters to be created and used

as part of the scan of the large table or fact table.

Note: With Database In-Memory, Bloom filters can be used on serial queries when executed against a table that is

populated into the IM column store. Not all of the tables in the query need to be populated into the IM column store

in order to create and use Bloom filters.

Join Groups

If there is no filter predicate on the dimension table (smaller table on the left hand side of the join) then a bloom filter

won’t be generated and the join will be executed as a standard HASH JOIN. New in 12.2, Join Groups have been

introduced to improve the performance of standard HASH JOINS in the IM column store. Join Groups allow the join

columns from multiple tables to share a single compression dictionary, enabling the HASH JOINS to be conducted

15 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

on the compressed values in the join columns rather than having to decompress the data and then hash it before

conducting the join.

Let’s look at an example of a two table join between the VEHICLES and SALES table to see the impact of Join

Groups:

SELECT v.year,

 v.name,

 s.sales_price

FROM vehicles v,

 sales s

WHERE v.name = s.name

Figure 22. Simple two-table join that won’t benefit from Bloom filters in the In-Memory column store

In this statement there is no filter predicate on the VEHICLES table so a Bloom filter won’t be generated. There are

also no indexes on these tables, so the optimizer will select a standard HASH JOIN plan (shown below):

Figure 23. Standard Hash Join Plan

This plan starts on line 2, with a full table scan of the VEHICLES table via the IM column store. The data from the

VEHICLES table will be read from the IM column store, decompressed and the values in the NAME column (the join

column) will be hashed to create a hash table in memory to help complete the HASH JOIN on line 1 of the plan.

Next, line 4 of the plan will be executed resulting in a full table scan of the SALES table. Again the data will be read

from the IM column store, decompressed and values in the NAME column will be hashed so they can be used to

probe into the hash table and complete the join.

Figure 24. Steps necessary to complete a standard Hash Join Plan

Let’s now create a Join Group to help improve the performance of this HASH JOIN. Below is the syntax you need to

create the join group:

CREATE INMEMORY JOIN GROUP jgroup_name (sales(name), vehicles(name))

Figure 25. Syntax for creating an In-Memory Join Group

16 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

The Join Group tells the IM column store that the NAME column in both the VEHICLES and SALES tables should share

the same compression dictionary. If you recall, the compression dictionary contains a list of the distinct values for a

column and the corresponding compression symbol. By using the same compression dictionary for the join column

in both the VEHICLES and SALES tables, we are able to conduct the join on the compressed values, saving the effort

of decompressing and hashing the data and reducing the amount of memory required to complete the join.

Although the Join Group has been created it won’t begin to help until both the VEHICLES and SALES tables are

repopulated into the IM column store, as we need to create and use the shared compression dictionary, known as a

common dictionary. You can confirm that a Join Group has been created and common dictionary exists by querying

the view USER_JOINGROUPS. Note that the Join Group details will be available along with the dictionary address

once the tables involved in the Join Group have been repopulated:

Figure 26. Query to confirm that a Join Group has been created and populated

If we return our focus to our simple query (Figure 22), we will see that the execution plan (figure 23) won’t change

even with the presence of the Join Group but how it’s executed will. The execution begins just as it did before, with a

full table scan of the VEHICLES table via the IM column store. The data from the VEHICLES table will be read from

the IM column store, and the values in the NAME column (the join column) will be used to create an array of

compressed values to help complete the HASH JOIN on line 1 of the plan. Next, line 4 of the plan will be executed

resulting in a full table scan of the SALES table via the IM column store. The compressed values in the NAME

column will be used to probe into the array to see if there is a match, thus completing the join.

Figure 27. Steps necessary to complete a Hash Join Plan with a Join Group

Currently in 12.2, if a Join Group has been defined between tables, these tables are not candidates to be check-

pointed to disk using In-Memory FastStart.

In-Memory Aggregation

Analytic style queries often require more than just simple filters and joins. They require complex aggregations and

summaries. A new optimizer transformation, called Vector Group By, was introduced with Database In-Memory to

ensure more complex analytic queries can be processed using new CPU-efficient algorithms.

The Vector Group By transformation is a two-part process not dissimilar to that of star transformation. Let’s take the

following business query as an example: Find the total sales of footwear products in outlet stores.

17 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Phase 1

1. The query will begin by scanning the two dimension tables (smaller tables) STORES and PRODUCTS (lines 5

& 10 in the plan below).

2. A new data structure called a Key Vector is created based on the results of each of these scans (lines 4, 9,

& 13 in the plan below). A key vector is similar to a Bloom filter as it allows the join predicates to be applied

as additional filter predicates during the scan of the SALES table (largest table). Unlike a Bloom filter a key

vector will not return a false positive.

3. The key vectors are also used to create an additional structure called an In-Memory Accumulator. The

accumulator is a multi-dimensional array built in the PGA that enables Oracle Database to conduct the

aggregation or GROUP BY during the scan of the SALES table instead of having to do it afterwards.

4. At the end of the first phase temporary tables are created to hold the payload columns (columns

referenced in the SELECT list) from the smaller dimension table (lines 2, 6, & 11 in the plan below). Starting

with 12.2, the temporary tables used are in-memory only and no IO is required. Note this step is not

depicted in Figure 28 below.

Figure 28. In-Memory aggregation example - Find the total sales of footwear in our outlet stores

Phase 2

5. The second part of the execution plan begins with the scan of the SALES table and the application of the

key vectors (line 24-29 in the plan below). For each entry in the SALES table that matches the join

conditions (is an outlet store and is a footwear product), the corresponding sales amount will be added to

the appropriate cell in the In-Memory Accumulator. If a value already exists in that cell, the two values will

be added together and the resulting value will be put in the cell.

6. Finally, the results of the large table scan are then joined back to the temporary tables created as part of

the scan of the dimension tables (lines 16, 18, & 19). Remember these temporary tables contain only the

payload columns. Note this step is not depicted in Figure 28 above.

The combination of these two phases dramatically improves the efficiency of a multiple table join with complex

aggregations.

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | TEMP TABLE TRANSFORMATION | |

| 2 | LOAD AS SELECT (CURSOR DURATION MEMORY)| SYS_TEMP_0FD9D75EA_4AB70D |

| 3 | HASH GROUP BY | |

| 4 | KEY VECTOR CREATE BUFFERED | :KV0000 |

18 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

| 5 | TABLE ACCESS INMEMORY FULL | STORES | <== PHASE 1

| 6 | LOAD AS SELECT (CURSOR DURATION MEMORY)| SYS_TEMP_0FD9D75EB_4AB70D |

| 7 | HASH GROUP BY | |

| 8 | KEY VECTOR CREATE BUFFERED | :KV0001 |

| 9 | TABLE ACCESS INMEMORY FULL | PRODUCTS |

| 10 | HASH GROUP BY | |

|* 11 | HASH JOIN | |

| 12 | TABLE ACCESS FULL | SYS_TEMP_0FD9D75EA_4AB70D |

|* 13 | HASH JOIN | |

| 14 | TABLE ACCESS FULL | SYS_TEMP_0FD9D75EB_4AB70D |

| 15 | VIEW | VW_VT_0737CF93 |

| 16 | VECTOR GROUP BY | |

| 17 | HASH GROUP BY | |

| 18 | KEY VECTOR USE | :KV0000 |

| 19 | KEY VECTOR USE | :KV0001 | <== PHASE2

| 20 | PARTITION RANGE ALL | |

|* 21 | TABLE ACCESS INMEMORY FULL | SALES |

Figure 29. Execution plan for query that benefits from In-Memory aggregation

The VECTOR GROUP BY transformation is a cost based transformation, which means the optimizer will compare the

execution plan with and without the transformation and pick the one with the lowest cost. For example, the VECTOR

GROUP BY transformation may be selected in the following scenarios:

» The join columns between the tables contain "mostly" unique keys or numeric keys

» The fact table (largest table in the query) is at least 10X larger than the other tables

» The tables are populated into the IM column store

The VECTOR GROUP BY transformation is unlikely to be chosen in the following scenarios:

» Joins are performed between two or more very large tables

» The dimension tables contain more than 2 billion rows

» The system does not have sufficient memory resources

DML and the In-Memory Column Store

It’s clear that the IM column store can dramatically improve the performance of all types of queries but very few

database environments are read only. For the IM column store to be truly effective in modern database

environments it has to be able to handle both bulk data loads AND online transaction processing.

Bulk Data Loads

Bulk data loads occur most commonly in Data Warehouse environments and are typically conducted as a direct path

load. A direct path load parses the input data, converts the data for each input field to its corresponding Oracle data

type, and then builds a column array structure for the data. These column array structures are used to format Oracle

data blocks and build index keys. The newly formatted database blocks are then written directly to the database,

bypassing the standard SQL processing engine and the database buffer cache.

A direct path load operation is an all or nothing operation. This means that the operation is not committed until all of

the data has been loaded. Should something go wrong in the middle of the operation, the entire operation will be

aborted. To meet this strict criterion, a direct path load inserts data into database blocks that are created above the

segment high water mark (i.e. the maximum number of database blocks used so far by an object or segment). Once

the direct path load is committed, the high water mark is moved to encompass the newly created blocks into the

segment and the blocks will be made visible to other SQL operations on the same table. Up until this point the IM

column store is not aware that any data change occurred on the segment.

19 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Once the operation has been committed, the IM column store is instantly aware it does not have all of the data

populated for the object. The size of the missing data will be visible in the BYTES_NOT_POPULATED column of the

v$IM_SEGMENTS view (see the Monitoring section). If the object has a PRIORITY specified on it then the newly

added data will be automatically populated into the IM column store. Otherwise the next time the object is queried,

the background worker processes will be triggered to begin populating the missing data, assuming there is free

space in the IM column store.

Partition Exchange Loads

It is strongly recommended that the larger tables or fact tables in a data warehouse be partitioned. One of the

benefits of partitioning is the ability to load data quickly and easily with minimal impact on users by using the

exchange partition command. The exchange partition command allows the data in a non-partitioned table to be

swapped into a particular partition in a partitioned table. The command does not physically move data; instead it

updates the data dictionary to exchange a pointer from the partition to the table and vice versa. Because there is no

physical movement of data, an exchange does not generate redo and undo, making it a sub-second operation and

far less likely to impact performance than any traditional data-movement approaches such as INSERT.

As with any direct path operation, the IM column is not aware of a partition exchange load until the operation has

been completed. At that point, the data in the temporary table is now part of the partitioned table. If the temporary

table had the INMEMORY attribute set and all of its data has been populated into the IM column store, nothing else

will happen. The data that was in the temporary table will simply be accessed via the IM column store along with the

rest of the data in the partitioned table the next time it is scanned.

However, if the temporary table did not have the INMEMORY attribute set, then all subsequent accesses to the data in

the newly exchanged partition will be done via the row store. Remember that the INMEMORY attribute is a physical

attribute of an object. If you wish the partition to have that attribute after the exchange it must be specified on the

temporary table before the exchange takes place. Specifying the attribute on the empty partition is not sufficient.

Figure 30. Five steps necessary to complete a partition exchange load on an INMEMORY table

Transaction Processing

Single row data change operations (DML) execute via the row store (OLTP style changes), just as they do without

Database In-Memory enabled. If the object in which the DML operations occur is populated in the IM column store,

then the changes are reflected in the IM column store as they occur. The row store and the column store are always

kept transactionally consistent, similarly to the way indexes are kept consistent. All serialization and logging is done

on the base table just as it was before. No additional locks or logging are needed for the In-Memory Column store.

20 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

For each IMCU in the IM column store, a Snapshot Metadata Unit (SMU) is automatically created and maintained

(see figure 31). When a DML statement changes a row in an object that is populated into the IM column store, the

corresponding column entries for that row are marked stale in the IMCU and the rowid is added to the metadata in

the SMU. The original entries in the IMCU are not immediately replaced in order to provide read consistency and

maintain data compression. Any transaction executing against the object in the IM column store, that started before

the DML occurred, can still see the originial version of the entries in the IMCU. Read consistency in the IM column

store is managed via System Change Numbers (SCNs) just as it is without Database In-Memory enabled.

 Figure 31. Each IMCU in the IM column store contains a subset of rows from an object and a corresponding SMU

When a query with a newer SCN is executed against the object, it will read all of the entries for the columns in the

IMCU except the stale entries. The stale entries will be retrieved from the base table (i.e. the row store).

Repopulation

The more stale entries there are in an IMCU, the slower the scan of the IMCU will become. Therefore Oracle

Database will repopulate an IMCU when the number of stale entries in an IMCU reaches a staleness threshold. The

staleness threshold is determined by heuristics that take into account the frequency of IMCU access and the number

of stale rows in the IMCU. Repopulation is more frequent for IMCUs that are accessed frequently or have a higher

percentage of stale rows. The repopulation of an IMCU is an online operation executed by the background worker

processes. The data is available at all times and any changes that occur to rows in the IMCU during repopulation

are automatically recorded.

In addition to the standard repopulation algorithm, there is another algorithm that attempts to clean all stale entries

using a low priority background process. The IMCO (In-Memory Coordinator) background process may also

instigate trickle repopulation for any IMCU in the IM column store that has some stale entries but does not currently

meet the staleness threshold. Trickle repopulate is a constant background activity.

The IMCO wakes up every two minutes and checks to see if any population tasks need to be completed. For

example, the INMEMORY attribute has just been specified with a PRIORITY sub-clause on a new object. The IMCO

will also check to see if there are any IMCUs with stale entries in the IM column store. If it finds some it will trigger

the worker processes to repopulate them. The number of IMCUs repopulated via trickle repopulate in a given 2

minute window is limited by the new initialization parameter INMEMORY_TRICKLE_REPOPULATE_SERVERS_PERCENT.

This parameter controls the maximum percentage of time that worker processes can participate in trickle

repopulation activities. The more worker processes that participate, the more IMCUs that can be trickle repopulated.

However, the more worker processes that participate the higher the CPU consumption. You can disable trickle

repopulation altogether by setting INMEMORY_TRICKLE_REPOPULATE_SERVERS_PERCENT to 0.

21 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Overhead of Keeping the IM Column Store Transactionally Consistent

The overhead of keeping the IM column store transactionally consistent will vary by application based on a number

of factors, including: the rate of change, the in-memory compression level chosen for a table, the location of the

changed rows, and the type of operations being performed. Tables with higher compression levels will incur more

overhead than tables with lower compression levels.

Changed rows that are co-located in the same block will incur less overhead than changed rows that are spread

randomly across a table. Examples of changed rows that are co-located in the same blocks are newly inserted rows

since the database will usually group these together. Another example is data that is loaded using a direct path load

operation.

For tables that have a high rate of DML, MEMCOMPRESS FOR DML is recommended, and, where possible, it is also

recommended to use partitioning to localize changes within the table. For example, range partitioning can be used

to localize data in a table by date so most changes will be confined to data stored in the most recent partition. Date

range partitioning also provides many other manageability and performance advantages.

The In-Memory Column Store on RAC

Each node in a RAC environment has its own IM column store. It is highly recommended that the IM column stores

be equally sized on each RAC node. Any RAC node that does not require an IM column store should have the

INMEMORY_SIZE parameter set to 0. By default all objects populated into memory will be distributed across all of the

IM column stores in the cluster. It is also possible to have the same objects appear in the IM column store on every

node (Engineered Systems only). The distribution of objects across the IM column stores in a cluster is controlled by

two additional sub-clauses to the INMEMORY attribute: DISTRIBUTE and DUPLICATE.

In a RAC environment, an object that only has the INMEMORY attribute specified on it will be distributed across all of

the IM column stores in the cluster, effectively making the IM column store a shared-nothing architecture. How an

object is distributed across the cluster is controlled by the DISTRIBUTE sub-clause. By default, Oracle decides the

best way to distribute the object across the cluster given the type of partitioning used (if any). Alternatively, you can

specify DISTRIBUTE BY ROWID RANGE to distribute by rowid range, DISTRIBUTE BY PARTITION to distribute

partitions to different nodes, or DISTRIBUTE BY SUBPARTITION to distribute sub-partitions to different nodes.

ALTER TABLE lineorder INMEMORY DISTRIBUTE BY PARTITION

Figure 32. This command distributes the lineorder table across the IM column stores in the cluster by partition.

DISTRIBUTE BY PARTITION or SUBPARTITION is recommended if the tables are partitioned or sub-partitioned by

HASH and a partition-wise join plan is expected. This will allow each partition join to be co-located within a single

node. DISTRIBUTE BY ROWID RANGE can be used for non-partitioned tables or for partitioned tables where

DISTRIBUTE BY PARTITION would lead to data skew.

If the object is very small (consists of just 1 IMCU), it will be populated into the IM column store on just one node in

the cluster.

Since data populated in-memory in a RAC environment is affinitized to a specific RAC node, parallel server

processes must be employed to execute a query on each RAC node against the piece of the object that resides in

that node’s IM column store. The query coordinator aggregates the results from each of the parallel server

processes together before returning them to the end user’s session. In order to ensure the parallel server processes

are distributed appropriately across the RAC cluster, the location of the data needs to be known. Previously,

Automatic Degree of Parallelism (Auto DOP) was required so that the query coordinator could ensure that the

22 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

degree of parallelism (DOP) was at least as great as the number of IM column stores involved in the query based on

IMCU locations. In 12.2 this restriction has been lifted, which means the onus is now on the user to ensure that the

DOP of the query is greater than or equal to the number of IM column stores involved. If this is not the case, then

the data residing in IM column stores that do not get a parallel server process assigned to them will have to be read

from the row store since IMCUs are not shipped across a RAC cluster.

If a DML statement is issued in a RAC environment, then the mechanism to provide read consistency is essentially

the same as what was described earlier in the Transaction Processing section. The main difference is that in a RAC

environment the row values that are changed are marked stale in the corresponding IMCU, whether it resides in the

local node (i.e. where the DML is issued) or in another node in the cluster. In either case the IM column store is

always kept transactionally consistent and no IMCUs are shipped between nodes. This ensures that DML in a RAC

environment is as efficient as possible.

Distribute For Service

In addition to distributing data across all IM column stores in the RAC cluster, new in 12.2 it is now possible to

selectively distribute objects to specific IM column stores using the FOR SERVICE subclause of the DISTRIBUTE

clause. This now makes it simpler to distribute an object to a subset of IM column stores based on service. This also

facilitates the placement of objects between primary and standby databases in an Active Data Guard environment

(see section below for more details). If the service is stopped then the objects distributed for that service will be

removed from the IM column store(s).

The following syntax shows adding a service to the SALES table:

ALTER TABLE sales INMEMORY DISTRIBUTE FOR SERVICE sales_ebiz

Figure 33. This command distributes sales table across the IM column stores in the cluster by service.

The SALES table will now be distributed in IM column stores for instances that run the sales_ebiz service.

The *_TABLES views have been modified to add in-memory service information.

Figure 34. In-memory service information for the SALES table.

Other benefits of the DISTRIBUTE FOR SERVICE subclause include support for rolling patches and upgrades, and

application affinity.

Support for rolling patches and upgrades

Using the DUPLICATE subclause and the FOR SERVICE subclause allows a node to be taken out of service without

affecting application availability, assuming that there is enough capacity to support the workload on the remaining

nodes.

Application affinity

Some applications require one or more dedicated nodes and the FOR SERVICE subclause makes it simpler to direct

specific objects to a specific node(s).

23 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

In-Memory Fault Tolerance

Given the shared nothing architecture of the IM column store in a RAC environment, some performance sensitive

applications may require a fault tolerant solution. On an Engineered System it is possible to mirror the data

populated into the IM column store by specifying the DUPLICATE sub-clause of the INMEMORY attribute. This means

that each IMCU populated into the IM column store will have a mirrored copy placed on one of the other nodes in

the RAC cluster. Mirroring the IMCUs provides in-memory fault tolerance as it ensures data is still accessible via the

IM column store even if a node goes down. It also improves performance, as queries can access both the primary

and the backup copy of the IMCU at any time.

Figure 35. Objects in the IM column store on Engineered Systems can be mirrored to improve fault tolerance

Should a RAC node go down and remain down for some time, the only impact will be the re-mirroring of the primary

IMCUs located on that node. Only if a second node were to go down and remain down for some time would the data

have to be redistributed.

If additional fault tolerance is desired, it is possible to populate an object into the IM column store on each node in

the cluster by specifying the DUPLICATE ALL sub-clause of the INMEMORY attribute. This will provide the highest

level of redundancy and provide linear scalability, as queries will be able to execute completely within a single node.

ALTER TABLE lineorder INMEMORY DUPLICATE ALL

Figure 36. This command ensures each IMCU of the lineorder table will appear in all IM column stores in the cluster

The DUPLICATE ALL option may also be useful to co-locate joins between large distributed fact tables and smaller

dimension tables. By specifying the DUPLICATE ALL option on the smaller dimension tables a full copy of these

tables will be populated into the IM column store on each node.

If a RAC node should go down on a non-Engineered System, the data populated into the IM column store on that

node will no longer be available in-memory on the cluster. Queries issued against the missing pieces of the objects

will not fail. Instead they will access the data either from the buffer cache or storage, which will impact the

performance of these queries. Should the node remain down for some time, the objects or pieces of the objects that

resided in the IM column store on that node will be populated on the remaining nodes in the cluster (assuming there

is available space). In order to minimize the impact on performance due to a downed RAC node, it is recommended

that some space be left free in the IM column store on each of the other nodes in the cluster.

Note that data is not redistributed to other nodes of the cluster immediately upon a node or instance failure because

it is very likely that the node or instance will be quickly brought back into service. If data was immediately

redistributed, the redistribution process would add extra workload to the system that then would be undone when the

node or instance returns to service. In order to avoid this, the system waits for a few minutes before initiating data

redistribution, allowing the node or instance time to rejoin the cluster.

24 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

When the node rejoins the cluster data will be redistributed to the newly joined node. The distribution is done on an

IMCU basis and the objects are fully accessible during this process.

In-Memory FastStart on RAC

In a RAC environment, in 12.2 the FastStart area is global (visible by all instances). The IMCUs from one instance

can be used by another instance to populate its IM column store. When the DUPLICATE ALL option is enabled,

only the primary instance persists the IMCUs to the FastStart area.

On instance restarts or IMCU population on a different RAC instance, the FastStart area is checked for availability of

the IMCU before it is populated from disk. If the IMCU exists in the FastStart area it can be used to efficiently

populate the IMCU into the IM column store. Alternatively, the regular population mechanism will populate the data

from disk.

Controlling the Content of the In-Memory Column Store with ADO

Automatic Data Optimization 1(ADO) was introduced in Oracle Database 12c Release 1 to enable the automation of

Information Lifecycle Management (ILM) tasks. ADO supports both compression tiering and storage tiering using

policies defined at the row or segment level on tables and partitions. The Heat Map feature of ADO tracks the

access of segments (reads & writes) at the row level (aggregated to block-level statistics) and at the segment level.

This allows the automatic management of database segments using policies based on how database segments are

being used.

New in 12.2, ADO has been extended to encompass the IM column store. ADO manages the content of the IM

column store by executing user-defined policies to move tables or partitions in and out of the IM column store, and

adjusting the compression level of objects within the IM column store from a lower compression level to a higher

compression level.

Three new policies have been added that enable managing objects in the IM column store:

POLICY NAME DESCRIPTION

SET INMEMORY Enables the INMEMORY attribute on a specified segment

MODIFY INMEMORY
Changes the compression level of an object from a lower level of

compression to a higher level

NO INMEMORY Removes, or evicts, an object from the IM column store

Figure 37. ADO policies for the IM column store

The criteria for ADO policy evaluation remains the same as it is for segment based policies which is the number of

days since the object was modified, accessed or created, or with a user-defined function. Policies will be executed

as part of the automated database maintenance task’s maintenance window, and since all ADO policies for

Database In-Memory are segment level policies they execute only one time and are then disabled.

1 More information Automatic Data Optimization can be found in the paper Automatic Data Optimization with Oracle

Database 12c Release 2

http://www.oracle.com/technetwork/database/automatic-data-optimization-wp-12c-1896120.pdf
http://www.oracle.com/technetwork/database/automatic-data-optimization-wp-12c-1896120.pdf

25 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Let’s look at an example of how to specify a policy on the SALES table to enable the INMEMORY attribute 5 days

after it was created. Delaying the population of newly created objects can be useful when those objects experience

a high rate of change initially, but then are used mostly for queries.

ALTER TABLE sales ilm ADD policy SET INMEMORY AFTER 5 days OF creation

Figure 38. Command to specify the INMEMORY attribute on the SALES table via an ADO policy

Alternatively, we could have enabled the INMEMORY attribute on the SALES table using the MEMCOMPRESS FOR DML

sub-clause and then specified an ADO policy to increase the compression level, 3 days after it stops being modified.

ALTER TABLE sales ilm ADD policy MODIFY INMEMORY memcompress FOR query high AFTER 3 days

OF no modification

Figure 39. Command to increase the in-memory compression level attribute on the SALES table via an ADO policy

Using the second approach we can maximize the space allocated within the IM column store without incurring

additional compression overhead for data that is being changed frequently.

Finally let’s look at a policy that will evict the SALES table from the IM column store after it has not been accessed for

30 days.

ALTER TABLE sales ilm ADD policy NO INMEMORY SEGMENT AFTER 30 days OF no ACCESS

Figure 40. Command to specify the NO INMEMORY attribute on the SALES table via an ADO policy

This type of policy provides the ability to automatically remove unused objects from the IM column store based on

Heat Map data, and eliminates the chances that a frequently accessed object will be inadvertently removed from the

IM column store.

User-Defined ADO Policy

You can also customize policies with the ON PL/SQL FUNCTION option using customized PL/SQL to determine

when the policy should be executed. The function must return a BOOLEAN value and accept a NUMBER as an

input parameter. The following is a simple example that always returns TRUE and then creates a policy based on

the function:

CREATE OR REPLACE FUNCTION custom_im_ado (objn IN NUMBER) RETURN BOOLEAN;

ALTER TABLE sales ilm ADD policy NO INMEMORY SEGMENT ON custom_im_ado;

Figure 41. An example of a PL/SQL function used for an ADO eviction policy on the SALES table

The In-Memory Column Store in a Multitenant Environment

Oracle Multitenant2 is a database consolidation model in which multiple Pluggable Databases (PDBs) are

consolidated within a Container Database (CDB). While keeping many of the isolation aspects of single databases, it

allows PDBs to share the System Global Area (SGA) and background processes of a common CDB. Therefore,

PDBs also share a single IM column store.

2 More information on Oracle Multitenant can be found in the white paper Oracle Multitenant: New Capabilities in Release

12.2

mailto:http://www.oracle.com/technetwork/database/multitenant/overview/multitenant-wp-12c-2078248.pdf
mailto:http://www.oracle.com/technetwork/database/multitenant/overview/multitenant-wp-12c-2078248.pdf

26 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Figure 42. Three PDBs in a single Oracle Database 12c Container Database

The total size of the IM column store is controlled by the INMEMORY_SIZE parameter setting in the CDB. Each PDB

specifies how much of the shared IM column store it can use by setting the INMEMORY_SIZE parameter. Not all

PDBs in a given CDB need to use the In-Memory column store. Some PDBs can have the INMEMORY_SIZE

parameter set to 0, which means they won't use the In-Memory column store at all.

It is not necessary for the sum of the PDBs’ INMEMORY_SIZE parameters to be less than or equal to the size of the

INMEMORY_SIZE parameter on the CDB. It is possible for the PDBs to over subscribe to the IM column store. Over

subscription is allowed to ensure that valuable space in the IM column store is not wasted should one of the

pluggable databases be shutdown or unplugged.

However, it is possible for one PDB to starve another PDB of space in the IM column store due to this over

subscription. If you don’t expect any PDBs to be shut down for extended periods or any of them to be unplugged it is

recommended that you don’t over subscribe.

Figure 43. PDBs specify how much of the shared IM column store they can use by setting INMEMORY_SIZE parameter

Each pluggable database (PDB) is a full Oracle database in its own right, so the data populated into the IM column

store by one PDB is not visible or accessible by another PDB and each PDB will have its own priority list. When a

PDB starts up the objects on its priority list will be populated into the In-Memory column store in order of its own

priority list.

The In-Memory Column Store in an Active Data Guard Environment

Oracle Active Data Guard3 is the most comprehensive solution available to eliminate single points of failure for

mission critical Oracle Databases. It prevents data loss and downtime in the simplest and most economical manner

by maintaining a synchronized physical replica of a production database at a remote location. If the production

database is unavailable for any reason, client connections can quickly, and in some configurations transparently,

failover to the synchronized replica to restore service. It also eliminates the high cost of idle redundancy by allowing

3 More information on Active Data Guard can be found in the paper Oracle Active Data Guard

http://www.oracle.com/technetwork/database/availability/active-data-guard-wp-12c-1896127.pdf

27 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

reporting applications, ad-hoc queries, and data extracts to be offloaded to read-only copies of the production

database.

Active Data Guard is unique in using a highly parallelized process to apply changes to a standby database for best

performance while enforcing the same read consistency model as the primary database. New in 12.2, Active Data

Guard has been tightly integrated with Database In-Memory, providing users the ability to enable the IM column

store on the primary, standby or both environments.

With synchronized physical replication and read-consistency, in-memory processing on Active Data Guard is a

viable solution for running read-only workloads instead of running those on the primary. It makes it possible to run

real-time analytics on the standby database with no impact on the production database, making productive use of

the standby database resources, and at the same time increasing the total columnar capacity of the system.

Figure 44. Example of how the IM column store on the standby database can have very different content to the primary

By considering the standby environment as a separate database, Database In-Memory makes it possible to

populate the same or a different set of tables or table partitions in-memory on the primary and on the standby

database. Just as Active Data Guard maintains a synchronized physical replica of the production database, it also

maintains the contents of the IM column store ensuring transactionally consistent results as of the query SCN.

As described in the RAC section above, the DISTRIBUTE FOR SERVICE clause can be used to specify the

placement and population of the in-memory objects across instances in a RAC cluster. This clause can also be used

for populating objects into the IM column store on the standby database by providing the appropriate service name,

active only on the standby.

When a service name is specified, the table or table partition is populated into memory only on the database

instances where the specified service is active. In an event of a role change or switchover, the tables will be

repopulated on the instance(s) where the new services are active.

Below is an example of syntax required to populate the EMPLOYEES table into memory only on the database

instances where the "REPORTING_STANDBY_SVC" is allowed to run.

CREATE TABLE employees

 (c1 NUMBER,

 c2 NUMBER,

 c3 VARCHAR2(10),

 c4 CLOB)

INMEMORY MEMCOMPRESS FOR QUERY

DISTRIBUTE AUTO FOR SERVICE reporting_standby_svc

Figure 45. Using DISTRIBUTE AUTO FOR SERVICE sub-clause to populate a table on the standby instance in Active Data Guard

28 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Restrictions on Active Data Guard

In an Active Data Guard environment, the standby is opened in a read-only mode, which has an impact on some of

the new In-Memory functionality as outlined below:

 It is not possible to maintain the In-Memory FastStart area on the standby database, therefore In-Memory

FastStart is not supported on the standby database.

 It is also not possible to maintain the Expression Statistics Store (ESS) on the standby database.

Therefore all automatically detected expressions will be based on the workload seen on the primary. If the

workload on the primary database is not representative of the workload on the standby we do not

recommend using automatically detected In-Memory Expressions. Instead In-Memory virtual columns

should be used to materialize the commonly used expressions on the standby into the IM column store.

 In-Memory Join Groups are not supported on the standby.

 With Automatic Data Optimization, INMEMORY policies are only evaluated on the primary database.

However, since ILM INMEMORY policies are implemented with ALTER TABLE statements, an object

residing in-memory on the standby database will be affected should a policy specified on it be executed.

For example, if an object is only populated in-memory on the standby database and an ILM INMEMORY

policy based on number of days since the object was accessed is specified on it, that policy would be

evaluated on the primary database. If the object is only accessed on the standby and never on the primary

then the outcome of that policy may not be what was expected. It is for this reason that we recommend

caution when specifying ILM INMEMORY policies based on days for objects that will reside in the standby

database only.

Extending In-Memory Columnar Format to Flash on Exadata

The Oracle Exadata Database Machine uses a unique set of software algorithms to implement database intelligence

in storage, PCI based flash, and InfiniBand networking. A full rack Exadata X6-2 Database Machine offers 180TB of

flash, which is nearly 10X the capacity of DRAM and can deliver up to 300GB/second of bandwidth from flash.

New in 12.2, it is possible to store data in the In-Memory columnar format in the flash cache in an Exadata

environment. This enables all of the In-Memory optimizations (accessing only the compressed columns required,

SIMD vector processing, storage indexes, etc.) to be used on a potentially much larger amount of data.

When the INMEMORY_SIZE parameter is set to a non-zero value, objects compressed using Hybrid Columnar

Compression4 (HCC) brought into Exadata flash cache will be automatically converted into the In-Memory columnar

format.

4 More information on Hybrid Columnar Compression can be found in the paper Exadata Hybrid Columnar Compression

http://www.oracle.com/technetwork/database/exadata/ehcc-twp-131254.pdf

29 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Figure 46. All of the benefit of In-Memory columnar now available on Exadata Flash

A new segment-level attribute, CELLMEMORY, has also been introduced to help control which objects should not be

populated into flash using the In-Memory columnar format and which type of compression should be used. Just like

the INMEMORY attribute you can specify different compression levels as sub-clauses to the CELLMEMORY attribute.

However, not all of the INMEMORY compression levels are available; only MEMCOMPRESS FOR QUERY LOW and

MEMCOMPRESS FOR CAPACITY LOW (default).

The PRIORTY sub-clause is also not available, as there are no background worker processes active on the Exadata

storage cells (where the flash cache resides) to do the population on startup. Therefore, only on demand population

is possible. When an object that is compressed using HCC is accessed for the first time, the process accessing the

data will do the population of the data into the flash cache. This will increase the elapsed time for the initial access of

the data, but all subsequent accesses will be able to benefit from all of the In-Memory optimizations when they

retrieve data from the flash cache.

ALTER TABLE trades CELLMEMORY MEMCOMPRESS FOR QUERY LOW

Figure 47. New CELLMMEORY segment-level attribute indicates that the TRADES table should be populated into Exadata flash

cache using MEMCOMPRESS FOR QUERY LOW compression

Note, only objects that are compressed using Hybrid Columnar Compression on disk are eligible to be populated

into the flash cache in the In-Memory columnar format. This restriction is to ensure that objects populated into flash

in the In-Memory columnar format are unlikely to be changing rapidly and therefore the overhead to maintain the In-

Memory columnar format in flash will be minimal.

Controlling the Use of Database In-Memory

There are several initialization parameters and optimizer hints that allow you to control when and how the IM column

store will be used. This section describes them all and provides guidance on which ones are core and which are

optional.

Core Initialization Parameters

Nine new initialization parameters with the INMEMORY prefix have been introduced to directly control the different

aspects of the new in-memory functionality. There is also a new optimizer parameter that can have an effect on

whether queries use the IM column store or not.

30 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Figure 48. In-Memory Initialization parameters

INMEMORY_SIZE

As described earlier in this document, the INMEMORY_SIZE parameter controls the amount of memory allocated to

the IM column store. The default size is 0 bytes. This parameter is only modifiable at the system level and will

require a database restart to take effect. The minimum size required for the INMEMORY_SIZE parameter is 100 MB.

Starting in 12.2 if the IM column store has been enabled (i.e. inmemory_size > 0) then it is possible to increase the

size of the IM column store dynamically. The IM column store must be increased in increments of 128MB or more,

and there must be enough memory available in the SGA to accommodate the increased size.

INMEMORY_QUERY

The Oracle Optimizer is aware of the objects populated in the IM column store and will automatically direct any

queries it believes will benefit from the in-memory column format to the IM column store. Setting INMEMORY_QUERY

to DISABLE either at the session or system level disables the use of the IM column store completely. It will blind the

Optimizer to what is in the IM column store and it will prevent the execution layer from scanning and filtering data in

the IM column store. The default value is ENABLE.

INMEMORY_MAX_POPULATE_SERVERS

The maximum number of worker processes that can be started is controlled by the

INMEMORY_MAX_POPULATE_SERVERS, which is set to 0.5 X CPU_COUNT by default. Reducing the number of worker

processes will reduce the CPU resource consumed during population but it will likely extend the amount of time it

takes to do the population of the IM column store.

Additional Initialization Parameters

INMEMORY_CLAUSE_DEFAULT

The INMEMORY_CLAUSE_DEFAULT parameter allows you to specify a default mode for in-memory tables by

specifying a valid set of values for all of the INMEMORY sub-clauses not explicitly specified in the syntax. The default

value is an empty string, which means that only explicitly specified tables are populated into the IM column store.

ALTER SYSTEM SET inmemory_clause_default = 'INMEMORY PRIORITY LOW'

Figure 49. Using the INMEMORY_CLAUSE_DEFAULT parameter to mark all new tables as candidates for the IM column store

31 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

The parameter value is parsed in the same way as the INMEMORY clause, with the same defaults if one of the sub-

clauses is not is specified. Any table explicitly specified for in-memory will inherit any unspecified values from this

parameter.

INMEMORY_TRICKLE_REPOPULATE_SERVERS_PERCENT

This parameter controls the maximum percentage of time that worker processes can perform trickle repopulation.

The value of this parameter is a percentage of the INMEMORY_MAX_POPULATE_SERVERS parameter. Setting this

parameter to 0 disables trickle repopulation; the default is 1 meaning that the worker processes will spend one

percent of their time performing trickle repopulate.

INMEMORY_FORCE

By default any object with the INMEMORY attribute specified on it is a candidate to be populated into the IM Column

Store. However, if INMEMORY_FORCE is set to OFF, then even if the in-memory area is configured, no tables are put

in memory. The default value is DEFAULT.

INMEMORY_VIRTUAL_COLUMNS

The INMEMORY_VIRTUAL_COLUMNS parameter controls the use of virtual columns in the IM column store. Three

parameter values are available (i.e. ENABLE, MANUAL, DISABLE). The ENABLE value specifies that all virtual

columns for the table or partition will be populated in the IM column store at the default table or partition

memcompress level unless the virtual column has been explicitly excluded or a different memcompress level has

been specified. The MANUAL value is the default and specifies that no virtual columns will be populated in-memory

unless they have been explicitly marked for inmemory or they have been marked for inmemory with a different

memcompress level. The DISABLE value disables the use of virtual columns in the IM column store.

INMEMORY_EXPRESSIONS_USAGE

The INMEMORY_EXPRESSIONS_USAGE parameter controls which In-Memory Expressions are populated in the IM

column store. There are four values for this parameter (i.e. STATIC_ONLY, DYNAMIC_ONLY, ENABLE, DISABLE).

The STATIC_ONLY value allows the population of JSON columns in a special binary JSON format. The

DYNAMIC_ONLY value will populate automatically created In-Memory Expressions in the IM column store when used

with the DBMS_INMEMORY.IME_CAPTURE_EXPRESSIONS procedure. The ENABLE value combines both the

STATIC_ONLY and DYNAMIC_ONLY parameter values, and the DISABLE value prevents any In-Memory Expressions

from being populated in the IM column store.

OPTIMIZER_INMEMORY_AWARE

As mentioned above, the optimizer is aware of the IM column store and uses in-memory specific costs when it costs

the alternative in-memory plans for a SQL statement. It is possible to disable all of the in-memory enhancements

made to the optimizer’s cost model by setting the OPTIMIZER_INMEMORY_AWARE parameter to FALSE. Please note

that even with the Optimizer in-memory enhancements disabled, you may still get an In-Memory plan.

Optimizer Hints

The different aspects of In-Memory - in-memory scans, joins and aggregations - can be controlled at a statement or

a statement block level via the use of optimizer hints. As with most optimizer hints, the corresponding negative hint

for each of the hints described below is preceded by the word 'NO_'. Remember that an optimizer hint is a directive

that will be followed when applicable.

32 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

INMEMORY Hint

The only thing the INMEMORY hint does is enables the IM column store to be used when the INMEMORY_QUERY

parameter is set to DISABLE.

It won’t force a table or partition without the INMEMORY attribute to be populated into the IM column store. If you

specify the INMEMORY hint in a SQL statement where none of the tables referenced in the statement are populated

into memory, the hint will be treated as a comment since it will not be applicable to the SQL statement.

Nor will the INMEMORY hint force a full table scan via the IM column store to be chosen, if the default plan (lowest

cost plan) is an index access plan. You will need to specify the FULL hint to see that plan change take effect.

The NO_INMEMORY hint does the same thing in reverse. It will prevent the access of an object from the IM column

store; even if the object is fully populated into the column store and the plan with the lowest cost is a full table scan.

In-Memory Scan

As stated above, if you wish to force an In-Memory full table scan you will need to use the FULL hint to change the

access method for an object (i.e. table, partition or subpartition).

The (NO_)INMEMORY_PRUNING hint can also influence the performance of an In-Memory scan as it controls the use

of In-Memory storage indexes. By default every query executed against the IM column store can take advantage of

the In-Memory storage indexes, which enable data pruning to occur based on the filter predicates supplied in a SQL

statement. As with most hints, the INMEMORY_PRUNING hint was introduced to help test the new functionality. In

other words, the hint was originally introduced to disable the IM storage indexes.

In-Memory Joins

The use of a Bloom filter to convert a join into a filter is a cost-based decision. If the Optimizer doesn’t choose a

Bloom filter, it is possible to force it by using the PX_JOIN_FILTER hint.

In-Memory Aggregation

The new in-memory aggregation feature (VECTOR GROUP BY) is a cost-based query transformation, which means

it’s possible to force the transformation to occur even when the Optimizer does not consider it to be the cheapest

execution plan. A VECTOR GROUP BY plan can be forced by specifying the VECTOR_TRANSFORM hint.

Conclusion

Oracle Database In-Memory transparently accelerates analytic queries by orders of magnitude, enabling real-time

business decisions. It dramatically accelerates data warehouses and mixed workload OLTP environments. The

unique "dual-format" approach automatically maintains data in both the existing Oracle row format for OLTP

operations, and in a new purely in-memory column format optimized for analytical processing. Both formats are

simultaneously active and transactionally consistent. Embedding the column store into Oracle Database ensures it is

fully compatible with ALL existing features, and requires absolutely no changes in the application layer. This means

you can start taking full advantage of it on day one, regardless of the application.

33 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Appendix A - Monitoring and Managing Oracle Database In-Memory

Monitoring Objects in the In-Memory Column Store

There are two new v$ views, v$IM_SEGMENTS and v$IM_USER_SEGMENTS that indicate what objects are currently

populated in the IM column store.

Figure 50. New v$IM_SEGMENTS view

These views not only show which objects are populated in the IM column store, they also indicate how the objects

are distributed across a RAC cluster and whether the entire object has been populated

(BYTES_NOT_POPULATED). It is also possible to use this view to determine the compression ratio achieved for

each object populated in the IM column store, assuming the objects were not compressed on disk.

SELECT v.owner, v.segment_name,

 v.bytes orig_size,

 v.inmemory_size in_mem_size,

 v.bytes / v.inmemory_size comp_ratio

FROM v$im_segments v;

Figure 51. Determining the compression ratio achieved for the objects populated into the IM column store

Another new view, v$IM_COLUMN_LEVEL, contains details on the columns populated into the column store, as not all

columns in a table need to be populated into the column store.

Figure 52. The PROD_ID column was not populated into the IM column store

34 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

USER_TABLES

A new Boolean column called INMEMORY has been added to the *_TABLES dictionary tables to indicate which

tables have the INMEMORY attribute specified on them.

Figure 53. New INMEMORY column added to *_TABLES to indicate which tables have INMEMORY attribute

In the example above you will notice that two of the tables – COSTS and SALES – don’t have a value for the

INMEMORY column. The INMEMORY attribute is a segment level attribute. Both COSTS and SALES are partitioned

tables and are therefore logical objects. The INMEMORY attribute for these tables will be recorded at the partition or

sub-partition level in *_TAB_(SUB)PARTITIONS.

Three additional columns – INMEMORY_PRIORITY, INMEMORY_DISTRIBUTE, and INMEMORY_COMPRESSION –

have also been added to the *_TABLES views to indicate the current In-Memory attributes for each table.

Two additional columns - INMEMORY_SERVICE, INMEMORY_SERVICE_NAME - have been added to the *_TABLES

views to indicate the In-Memory attributes associated with the FOR SERVICE subclause of the DISTRIBUTE clause.

Finally an additional column, CELLMEMORY has been added to the *_TABLES views to indicate that the table is a

candidate to be brought into the flash cache on Exadata with non-default values.

USER_IM_EXPRESSIONS

A new set of views has been added USER_IM_EXPRESSIONS and DBA_IM_EXPRESSIONS to allow the easy display of

In-Memory Expressions.

Figure 54. New USER_IM_EXPRESSIONS view

In the example above you will notice that the table and column name is available along with the SQL expression and

object number. The DBA_IM_EXPRESSIONS view adds the OWNER column.

35 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

Managing IM Column Store Population CPU Consumption

The initial population of the IM column store is a CPU intensive operation, which can affect the performance of other

workloads running concurrently. You can use Resource Manager5 to control the CPU usage of IM column store

population operations and change their priority as needed.

To do this, enable CPU Resource Manager by enabling one of the out-of-box resource plans, such as default_plan,

or by creating your own resource plan. By default, in-memory population is run in the ora$autotask consumer group,

except for on-demand population, which runs in the consumer group of the user that triggered the population. If the

ora$autotask consumer group doesn’t exist in the resource plan, then the population will run in OTHER_GROUPS. The

other operations in ora$autotask include automated maintenance operations like gathering statistics and segment

analysis.

The SET_CONSUMER_GROUP_MAPPING procedure can be used to change the consumer group for in-memory

population.

BEGIN

 dbms_resource_manager.set_consumer_group_mapping(

 attribute => 'ORACLE_FUNCTION',

 value => 'INMEMORY',

 consumer_group => 'BATCH_GROUP');

END;

Figure 55. Changing the Resource Manager consumer group of the INMEMORY operation

Session Level Statistics

It is also possible to monitor what is happening with Database In-Memory by querying the session level statistics.

Below is a list of the most commonly queried In-Memory session level statistics an explanation of what they

represent.

Statistics Name Description

IM scan rows optimized

Number of rows that were skipped (because of storage

index pruning) or that weren't accessed due to

aggregations with predicate push downs

IM scan rows projected Number of rows returned to the upper layer

IM scan rows Number of rows scanned in all IMCUs

IM scan rows valid
Number of rows scanned in all IMCUs after applying

valid vector

IM scan CUs no memcompress

IM scan CUs memcompress for *

Number of times IMCUs of each memcompress type

were touched

IM scan CUs columns accessed Number of columns accessed by a scan

5 More information on using Oracle Database Resource Manager can be found in the white paper Using Oracle Resource

Manager

http://www.oracle.com/technetwork/database/focus-areas/performance/resource-manager-twp-133705.pdf
http://www.oracle.com/technetwork/database/focus-areas/performance/resource-manager-twp-133705.pdf

36 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

IM scan CUs invalid or missing revert to on disk extent
Number of on disk extents accessed due to missing or

invalid IMCUs

IM scan CUs pruned Number of IMCUs with no rows passing min/max

IM scan segments minmax eligible Number of IMCUs that are eligible for min/max pruning

IM scan segments disk
Number of times a segment marked for in-memory was

accessed entirely from the buffer cache/direct read

IM scan CUs predicates applied Number of min/max predicates applied

IM scan CUs predicates optimized
Number of IMCUs where either all rows passed

min/max or no rows passed min/max

IM scan CUs predicates received Number of min/max predicates received

IM scan EU rows Number of rows scanned from EUs in the IM column

store before where clause predicate applied

IM scan EUs no memcompress

IM scan EUs memcompress for *

Number of times IMEUs of each memcompress type

were touched

IM scan EUs columns accessed Number of columns in the EUs accessed by scans

IM scan EUs columns decompressed Number of columns in the EUs decompressed by scans

IM scan EU bytes in-memory Size in bytes of in-memory EU data accessed by scans

IM scan EU bytes uncompressed Uncompressed size in bytes of in-memory EU data

accessed by scans

IM scan EUs columns theoretical max Number of columns that would have been accessed

from the EU if the scans looked at all columns

IM scan EUs split pieces Number of split EU pieces among all IM EUs

IM populate segments requested Number of population tasks for in-memory segments

table scan disk IMC fallback
Number of rows in blocks scanned from buffer

cache/direct read where an IM scan was possible

37 | ORACLE DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

table scan disk non-IMC rows gotten
Number of rows in blocks scanned from buffer

cache/direct read where an IM scan was not possible

table scans (IM) Number of segments scanned in-memory

session logical reads - IM Number of blocks scanned in an IMCU

Figure 56. List of useful INMEMORY session level statistics

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116

Oracle Database In-Memory: Technical Overview
August 2017, Revision 2.15
Author: Andy Rivenes, Maria Colgan, Vineet Marwah

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

Das Karlsruher Systemhaus HUNKLER wurde 1988 erster offizieller Part-

ner von Oracle in Deutschland. Ein Team von rund 20 Mitarbeitern unter-

stützt Kunden aus Industrie, öffentlicher Verwaltung, Gesundheits- und

Finanzwesen mit Beratung, Lösungsentwicklung und Managed Services.

Im Fokus von HUNKLER stehen leistungsfähige, wirtschaftliche Infrastrukturen für

Oracle-datenbanken mit den Schwerpunkten Hochverfügbarkeit, Ausfallsicherheit

und Zero Downtime Migration. Die integrierten Komplettlösungen der Produktfa-

milie Oracle Engineered Systems sowie der Datenbank-/Anwendungsbetrieb in der

Oracle Cloud sind weitere Themenfelder, die das Unternehmen umfassend abdeckt.

ÜBER HUNKLER

Hauptsitz Karlsruhe

Bannwaldallee 32, 76185 Karlsruhe

Tel. 0721-490 16-0, Fax 0721-490 16-29

Geschäftsstelle Bodensee

Fritz-Reichle-Ring 6a

78315 Radolfzell

Tel. 07732-939 14-00, Fax 07732-939 14-04

 info@hunkler.de, www.hunkler.de

